-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
134 lines (105 loc) · 5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
"""
Wide ResNet by Sergey Zagoruyko and Nikos Komodakis
Fixup initialization by Hongyi Zhang, Yann N. Dauphin, Tengyu Ma
Based on code by xternalz and Andy Brock:
https://github.com/xternalz/WideResNet-pytorch
https://github.com/ajbrock/BoilerPlate
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicBlock(nn.Module):
droprate = 0.0
use_bn = True
use_fixup = False
fixup_l = 12
def __init__(self, in_planes, out_planes, stride):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1, padding=1, bias=False)
self.equalInOut = in_planes == out_planes
self.conv_res = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=0, bias=False)
self.conv_res = not self.equalInOut and self.conv_res or None
assert self.use_fixup or self.use_bn, "Need to use at least one thing: Fixup or BatchNorm"
if self.use_fixup:
self.multiplicator = nn.Parameter(torch.ones(1,1,1,1))
self.biases = nn.ParameterList([nn.Parameter(torch.zeros(1,1,1,1))] * 4)
k = self.conv1.kernel_size[0] * self.conv1.kernel_size[1] * self.conv1.out_channels
self.conv1.weight.data.normal_(0, self.fixup_l ** (-0.5) * math.sqrt(2. / k))
self.conv2.weight.data.zero_()
if self.conv_res is not None:
k = self.conv_res.kernel_size[0] * self.conv_res.kernel_size[1] * self.conv_res.out_channels
self.conv_res.weight.data.normal_(0, math.sqrt(2. / k))
def forward(self, x):
if self.use_bn:
x_out = self.relu(self.bn1(x))
out = self.relu(self.bn2(self.conv1(x_out)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
else:
x_out = self.relu(x + self.biases[0])
out = self.conv1(x_out) + self.biases[1]
out = self.relu(out) + self.biases[2]
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.multiplicator * self.conv2(out) + self.biases[3]
if self.equalInOut:
return torch.add(x, out)
return torch.add(self.conv_res(x_out), out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride):
layers = []
for i in range(int(nb_layers)):
_in_planes = i == 0 and in_planes or out_planes
_stride = i == 0 and stride or 1
layers.append(block(_in_planes, out_planes, _stride))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(self, depth, num_classes, widen_factor=1, droprate=0.0, use_bn=True, use_fixup=False):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0, "You need to change the number of layers"
n = (depth - 4) / 6
BasicBlock.droprate = droprate
BasicBlock.use_bn = use_bn
BasicBlock.fixup_l = n * 3
BasicBlock.use_fixup = use_fixup
block = BasicBlock
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1, bias=False)
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1)
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2)
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2)
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
k = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / k))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
if use_fixup:
m.weight.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(-1, self.nChannels)
return self.fc(out)