-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
306 lines (243 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
"""
Based on code by xternalz: https://github.com/xternalz/WideResNet-pytorch
Wide ResNet by Sergey Zagoruyko and Nikos Komodakis
"""
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.autograd import Variable
from model import WideResNet
from utils.cutout import Cutout
from tensorboard_logger import configure, log_value
parser = argparse.ArgumentParser(description="PyTorch WideResNet Training")
parser.add_argument("--dataset", default="cifar10", type=str,
help="dataset (cifar10 [default] or cifar100)")
parser.add_argument("--epochs", default=200, type=int,
help="number of total epochs to run")
parser.add_argument("--start-epoch", default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument("-b", "--batch-size", default=128, type=int,
help="mini-batch size (default: 128)")
parser.add_argument("--lr", "--learning-rate", default=0.1, type=float,
help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
parser.add_argument("--nesterov", default=True, type=bool, help="nesterov momentum")
parser.add_argument("--weight-decay", "--wd", default=5e-4, type=float,
help="weight decay (default: 5e-4)")
parser.add_argument("--print-freq", "-p", default=10, type=int,
help="print frequency (default: 10)")
parser.add_argument("--layers", default=28, type=int,
help="total number of layers (default: 28)")
parser.add_argument("--widen-factor", default=10, type=int,
help="widen factor (default: 10)")
parser.add_argument("--batchnorm", default=True, type=bool,
help="apply BatchNorm")
parser.add_argument("--fixup", default=True, type=bool,
help="apply Fixup")
parser.add_argument("--droprate", default=0, type=float,
help="dropout probability (default: 0.0)")
parser.add_argument("--cutout", default=False, type=bool,
help="apply cutout")
parser.add_argument("--n_holes", default=1, type=int,
help="number of holes to cut out from image")
parser.add_argument("--length", default=16, type=int,
help="length of the holes")
parser.add_argument("--no-augment", dest="augment", action="store_false",
help="whether to use standard augmentation (default: True)")
parser.add_argument("--resume", default="", type=str,
help="path to latest checkpoint (default: none)")
parser.add_argument("--name", default="WideResNet-28-10", type=str,
help="name of experiment")
parser.add_argument("--tensorboard",
help="Log progress to TensorBoard", action="store_true")
parser.set_defaults(augment=True)
best_prec1 = 0
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def main():
global args, best_prec1
args = parser.parse_args()
if args.tensorboard:
configure(f"runs/{args.name}")
normalize = transforms.Normalize(mean=[x / 255.0 for x in [125.3, 123.0, 113.9]],
std=[x / 255.0 for x in [63.0, 62.1, 66.7]])
if args.augment:
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0), (4,4,4,4), mode="reflect").squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
else:
transform_train = transforms.Compose([
transforms.ToTensor(),
normalize,
])
if args.cutout:
transform_train.transforms.append(Cutout(n_holes=args.n_holes, length=args.length))
transform_test = transforms.Compose([
transforms.ToTensor(),
normalize
])
kwargs = {"num_workers": 1, "pin_memory": True}
assert(args.dataset == "cifar10" or args.dataset == "cifar100")
train_loader = torch.utils.data.DataLoader(
datasets.__dict__[args.dataset.upper()]("../data", train=True, download=True,
transform=transform_train), batch_size=args.batch_size, shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(
datasets.__dict__[args.dataset.upper()]("../data", train=False, transform=transform_test),
batch_size=args.batch_size, shuffle=True, **kwargs)
model = WideResNet(args.layers, args.dataset == "cifar10" and 10 or 100,
args.widen_factor, droprate=args.droprate,
use_bn=args.batchnorm, use_fixup=args.fixup)
param_num = sum([p.data.nelement() for p in model.parameters()])
print(f"Number of model parameters: {param_num}")
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model = model.cuda()
if args.resume:
if os.path.isfile(args.resume):
print(f"=> loading checkpoint {args.resume}")
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint["epoch"]
best_prec1 = checkpoint["best_prec1"]
model.load_state_dict(checkpoint["state_dict"])
print(f"=> loaded checkpoint '{args.resume}' (epoch {checkpoint['epoch']})")
else:
print(f"=> no checkpoint found at {args.resume}")
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum, nesterov=args.nesterov,
weight_decay=args.weight_decay)
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch+1)
train(train_loader, model, criterion, optimizer, epoch)
prec1 = validate(val_loader, model, criterion, epoch)
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
"epoch": epoch + 1,
"state_dict": model.state_dict(),
"best_prec1": best_prec1,
}, is_best)
print("Best accuracy: ", best_prec1)
def train(train_loader, model, criterion, optimizer, epoch):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var)
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print("Epoch: [{0}][{1}/{2}]\t"
"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"Prec@1 {top1.val:.3f} ({top1.avg:.3f})".format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, top1=top1))
if args.tensorboard:
log_value("train_loss", losses.avg, epoch)
log_value("train_acc", top1.avg, epoch)
def validate(val_loader, model, criterion, epoch):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
with torch.no_grad():
output = model(input_var)
loss = criterion(output, target_var)
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print("Test: [{0}/{1}]\t"
"Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
"Loss {loss.val:.4f} ({loss.avg:.4f})\t"
"Prec@1 {top1.val:.3f} ({top1.avg:.3f})".format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1))
print(" * Prec@1 {top1.avg:.3f}".format(top1=top1))
if args.tensorboard:
log_value("val_loss", losses.avg, epoch)
log_value("val_acc", top1.avg, epoch)
return top1.avg
def save_checkpoint(state, is_best, filename="checkpoint.pth.tar"):
"""Saves checkpoint to disk"""
directory = "runs/%s/"%(args.name)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, "runs/%s/"%(args.name) + "model_best.pth.tar")
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR divided by 5 at 60th, 120th and 160th epochs"""
lr = args.lr * ((0.2 ** int(epoch >= 60)) * (0.2 ** int(epoch >= 120))* (0.2 ** int(epoch >= 160)))
if args.tensorboard:
log_value("learning_rate", lr, epoch)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == "__main__":
main()