-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain0.py
322 lines (273 loc) · 11.1 KB
/
train0.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import torch
import torch.nn as nn
import torch.optim as optim
import sparseconvnet as scn
import uproot
import matplotlib.pyplot as plt
import numpy as np
from model import Hello
from model import ResNet
from model import DeepVtx
import sys
import math
import re
from timeit import default_timer as timer
import csv
import util
def balance_BCE(criterion, prediction, truth, sig_len = 1):
if torch.isnan(prediction).any() or torch.isnan(truth).any() :
return None
if len(prediction.shape) != 1 or len(truth.shape) != 1 :
raise Exception('input needs to have 1 dim')
if prediction.shape[0] != truth.shape[0] :
raise Exception('input needs to have same length')
tot_len = prediction.shape[0]
if tot_len < 1 or tot_len < sig_len or sig_len < 0 :
raise Exception('length err')
bkg_len = tot_len - sig_len
loss_sig = criterion(prediction[0:sig_len], truth[0:sig_len]) * bkg_len / tot_len
loss_bkg = criterion(prediction[sig_len:], truth[sig_len:]) * sig_len / tot_len
# print(truth.shape[0], ': ', sig_len, ', ', bkg_len)
return loss_sig + loss_bkg
def DistanceLoss(a, b) :
return torch.dist(a,b)
def scheduler_exp(optimizer, lr0, gamma, epoch):
lr = lr0*math.exp(-gamma*epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
# Use the GPU if there is one and sparseconvnet can use it, otherwise CPU
# use_cuda = torch.cuda.is_available() and scn.SCN.is_cuda_build()
use_cuda = False
torch.set_num_threads(1)
device = 'cuda:0' if use_cuda else 'cpu'
if use_cuda:
print("Using CUDA.")
else:
print("Using CPU.")
nIn = 1
model = DeepVtx(dimension=3, nIn=nIn, device=device)
model.train()
start_epoch = 0
if start_epoch > 0 :
model.load_state_dict(torch.load('checkpoints/CP{}.pth'.format(start_epoch-1)))
w = 100
lr0 = 1e-3
lr_decay = 0.05
# criterion = nn.BCELoss().to(device)
weight = torch.tensor([1, w], dtype=torch.float32)
criterion = nn.CrossEntropyLoss(weight=weight).to(device)
# optimizer = optim.SGD(model.parameters(), lr=lr0, momentum=0.9, weight_decay=0.0005)
optimizer = optim.Adam(model.parameters(), lr=lr0)
dir_checkpoint = 'checkpoints/'
outfile_loss = open(dir_checkpoint+'/loss.csv','a+')
outfile_log = open(dir_checkpoint+'/log','a+')
train_list = 'list/nuecc-39k-train.csv'
val_list = 'list/nuecc-21k-val.csv'
ntrain = 100
nval = 20
nepoch = 50
# batch_size = 1
resolution = 1.0
loose_cut = 2.0
vertex_assign_cut = 0.0
print('lr: {:.2e}*exp-{:.2e}*epoch weight: {} start: {} ntrain: {} nval: {} device: {} nIn: {} resolution:{} loose_cut: {}'.format(
lr0, lr_decay, w, start_epoch, ntrain, nval, device, nIn, resolution, loose_cut
), file=outfile_log, flush=True)
print('train: {} val: {}'.format(
train_list, val_list
), file=outfile_log, flush=True)
start = timer()
for epoch in range(start_epoch, start_epoch+nepoch):
optimizer = scheduler_exp(optimizer, lr0, lr_decay, epoch)
# setup toolbar
toolbar_width = 100
epoch_time = timer()
sys.stdout.write("train %d : [%s]" % (epoch, " " * toolbar_width))
sys.stdout.flush()
sys.stdout.write("\b" * (toolbar_width+1)) # return to start of line, after '['
epoch_loss = 0
epoch_crt = np.zeros([2,2,2])
epoch_pur = 0; epoch_eff = 0; epoch_loose = 0
batch_list = []
with open(train_list) as f:
optimizer.zero_grad()
reader = csv.reader(f, delimiter=' ')
ntry = 0
npass = 0
nfail = np.zeros(10)
for row in reader:
ntry = ntry + 1
if ntry > ntrain :
break
if ntry%(ntrain/toolbar_width) == 0 :
sys.stdout.write("=")
sys.stdout.flush()
coords_np, ft_np = util.load(row, vis=True, resolution=resolution, vertex_assign_cut=vertex_assign_cut, mode='vox')
if ft_np[np.argmax(ft_np[:,-1]), 0] <= 0 :
nfail[0] = nfail[0] + 1
# if epoch == start_epoch :
# print('no charge for {}'.format(ntry))
# util.load_vtx(row, vis=True)
continue
# mini-batch
# if len(batch_list) < batch_size :
# batch_list.append(row)
# continue
# else :
# coords_np, ft_np = util.batch_load(batch_list)
coords = torch.LongTensor(coords_np)
truth = torch.LongTensor(ft_np[:,-1]).to(device)
ft = torch.FloatTensor(ft_np[:,0:-1]).to(device)
prediction = model([coords,ft[:,0:nIn]])
# debug section
# input = model.inputLayer([torch.LongTensor(coords_np),torch.FloatTensor(ft_np).to(device)])
# print(torch.FloatTensor(ft_np).to(device)[:,3]-input.features[:,3])
# exit()
# if True :
# pred_np = prediction.cpu().detach().numpy()
# pred_np = pred_np[:,1] - pred_np[:,0]
# truth_np = truth.cpu().detach().numpy()
# util.vis_prediction(coords_np, pred_np, truth_np, ref=ft_np[:,2], threshold=0)
# exit()
pred_np = prediction.cpu().detach().numpy()
if np.isnan(pred_np).any() :
continue
# class 1 - class 0 and exclude the 1st point
pred_np = pred_np[:,1] - pred_np[:,0]
truth_np = truth.cpu().detach().numpy()
truth_idx = np.argmax(truth_np)
pred_idx = np.argmax(pred_np)
c = 0; r = 0; t = 0
if ft[truth_idx,1] > 0 :
c = 1
if ft[truth_idx,2] > 0 :
r = 1
if truth_idx == pred_idx:
t = 1
epoch_crt[c,r,t] += 1
# pred_cand = pred_np >= pred_np[np.argmax(pred_np)]
pred_cand = pred_np > 0
if pred_cand[truth_idx] == True :
epoch_eff += 1
epoch_pur += 1./np.count_nonzero(pred_cand)
d = np.linalg.norm(coords[pred_idx,:] - coords[truth_idx,:])
if d*resolution <= loose_cut :
epoch_loose += 1
# if ntry == 1:
# print(coords_np[coords_np[:,0]==93])
# print(ft_np[coords_np[:,0]==93])
# print(ntry, ft_np)
# exit()
loss = criterion(prediction,truth)
# loss = DistanceLoss(coords[pred_idx].type(torch.FloatTensor), coords[truth_idx].type(torch.FloatTensor))
if(loss is None) :
continue
epoch_loss += loss.item()
loss.backward()
optimizer.step()
npass = npass + 1
sys.stdout.write("]\n")
torch.save(model.state_dict(), dir_checkpoint + 'CP{}.pth'.format(epoch))
train_loss = 0
train_hits = 0
train_pur = 0
train_eff = 0
train_loose = 0
if npass > 0 :
train_loss = epoch_loss / npass
train_hits = np.sum(epoch_crt[:,:,1]) / npass
train_eff = epoch_eff / npass
train_pur = epoch_pur / npass
train_loose = epoch_loose / npass
if epoch == start_epoch :
print('train: ntry: {} npass: {} vq=0: {}'.format(ntry, npass, nfail[0]), file=outfile_log, flush=True)
print('epoch: {}'.format(epoch), file=outfile_log, flush=True)
print(epoch_crt, file=outfile_log, flush=True)
# validation
sys.stdout.write("val %d : [%s]" % (epoch, " " * toolbar_width))
sys.stdout.flush()
sys.stdout.write("\b" * (toolbar_width+1)) # return to start of line, after '['
epoch_loss = 0
epoch_crt = np.zeros([2,2,2])
epoch_pur = 0; epoch_eff = 0; epoch_loose = 0
with open(val_list) as f:
reader = csv.reader(f, delimiter=' ')
ntry = 0
npass = 0
nfail = np.zeros(10)
for row in reader:
ntry = ntry + 1
if ntry > nval :
break
if ntry%(nval/toolbar_width) == 0 :
sys.stdout.write("=")
sys.stdout.flush()
coords_np, ft_np = util.load(row, vis=False, resolution=resolution, vertex_assign_cut=vertex_assign_cut, mode='vox')
if ft_np[np.argmax(ft_np[:,-1]), 0] <= 0 :
nfail[0] = nfail[0] + 1
# if epoch == start_epoch :
# print('no charge for {}'.format(ntry))
continue
coords = torch.LongTensor(coords_np)
truth = torch.LongTensor(ft_np[:,-1]).to(device)
ft = torch.FloatTensor(ft_np[:,0:-1]).to(device)
prediction = model([coords,ft[:,0:nIn]])
pred_np = prediction.cpu().detach().numpy()
if np.isnan(pred_np).any() :
continue
pred_np = pred_np[:,1] - pred_np[:,0]
truth_np = truth.cpu().detach().numpy()
truth_idx = np.argmax(truth_np)
pred_idx = np.argmax(pred_np)
c = 0; r = 0; t = 0
if ft[truth_idx,1] > 0 :
c = 1
if ft[truth_idx,2] > 0 :
r = 1
if truth_idx == pred_idx:
t = 1
epoch_crt[c,r,t] = epoch_crt[c,r,t] + 1
# pred_cand = pred_np >= pred_np[np.argmax(pred_np)]
pred_cand = pred_np > 0
if pred_cand[truth_idx] == True :
epoch_eff = epoch_eff + 1
epoch_pur = epoch_pur + 1./np.count_nonzero(pred_cand)
d = np.linalg.norm(coords[pred_idx,:] - coords[truth_idx,:])
if d*resolution <= loose_cut :
epoch_loose += 1
loss = criterion(prediction,truth)
# loss = DistanceLoss(coords[pred_idx].type(torch.FloatTensor), coords[truth_idx].type(torch.FloatTensor))
if(loss is None) :
continue
epoch_loss += loss.item()
npass = npass + 1
val_loss = 0
val_hits = 0
val_pur = 0
val_eff = 0
val_loose = 0
if npass > 0 :
val_loss = epoch_loss / npass
val_hits = np.sum(epoch_crt[:,:,1]) / npass
val_eff = epoch_eff / npass
val_pur = epoch_pur / npass
val_loose = epoch_loose / npass
sys.stdout.write("]\n")
epoch_time = timer() - epoch_time
if epoch == start_epoch :
print('train: ntry: {} npass: {} vq=0: {}'.format(ntry, npass, nfail[0]), file=outfile_log, flush=True)
print('epoch: {}'.format(epoch), file=outfile_log, flush=True)
print(epoch_crt, file=outfile_log, flush=True)
metrics = '{}, '.format(epoch)
metrics += 'loss: {:.6f}, {:.6f}, '.format(train_loss, val_loss)
metrics += 'hit: {:.6f}, {:.6f}, '.format(train_hits, val_hits)
metrics += 'eff: {:.6f}, {:.6f}, '.format(train_eff, val_eff)
metrics += 'pur: {:.6f}, {:.6f}, '.format(train_pur, val_pur)
metrics += 'loose: {:.6f}, {:.6f}, '.format(train_loose, val_loose)
metrics += 'time: {:.6f}, '.format(epoch_time)
print(metrics)
print(re.sub(r'[a-z]*: ', r'', metrics), file=outfile_loss, flush=True)
end = timer()
if nepoch > 0:
print('time/epoch: {0:.1f} ms'.format((end-start)/nepoch*1000))