forked from FluxML/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfizzbuzz.jl
68 lines (53 loc) · 1.5 KB
/
fizzbuzz.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Inspired by "Fizz Buzz in Tensorflow" blog by Joel Grus
# http://joelgrus.com/2016/05/23/fizz-buzz-in-tensorflow/
using Flux: Chain, Dense, params, logitcrossentropy, onehotbatch, ADAM, train!, softmax
using Test
# Data preparation
function fizzbuzz(x::Int)
is_divisible_by_three = x % 3 == 0
is_divisible_by_five = x % 5 == 0
if is_divisible_by_three & is_divisible_by_five
return "fizzbuzz"
elseif is_divisible_by_three
return "fizz"
elseif is_divisible_by_five
return "buzz"
else
return "else"
end
end
const LABELS = ["fizz", "buzz", "fizzbuzz", "else"];
# Feature engineering
features(x) = float.([x % 3, x % 5, x % 15])
features(x::AbstractArray) = hcat(features.(x)...)
function getdata()
@test fizzbuzz.([3, 5, 15, 98]) == LABELS
raw_x = 1:100;
raw_y = fizzbuzz.(raw_x);
X = features(raw_x);
y = onehotbatch(raw_y, LABELS);
return X, y
end
function train()
# Get Data
X, y = getdata()
# Model
m = Chain(Dense(3, 10), Dense(10, 4))
loss(x, y) = logitcrossentropy(m(x), y)
# Helpers
deepbuzz(x) = (a = argmax(m(features(x))); a == 4 ? x : LABELS[a])
function monitor(e)
print("epoch $(lpad(e, 4)): loss = $(round(loss(X,y); digits=4)) | ")
@show deepbuzz.([3, 5, 15, 98])
end
opt = ADAM()
# Training
for e in 0:500
train!(loss, params(m), [(X, y)], opt)
if e % 50 == 0
monitor(e)
end
end
end
cd(@__DIR__)
train()