forked from anyoptimization/pymoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hv.py
279 lines (242 loc) · 10.1 KB
/
hv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
# Copyright (C) 2010 Simon Wessing
# TU Dortmund University
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
__author__ = "Simon Wessing"
class HyperVolume:
"""
Hypervolume computation based on cross 3 of the algorithm in the paper:
C. M. Fonseca, L. Paquete, and M. Lopez-Ibanez. An improved dimension-sweep
algorithm for the hypervolume indicator. In IEEE Congress on Evolutionary
Computation, pages 1157-1163, Vancouver, Canada, July 2006.
Minimization is implicitly assumed here!
"""
def __init__(self, referencePoint):
"""Constructor."""
self.referencePoint = referencePoint
self.list = []
def compute(self, front):
"""Returns the hypervolume that is dominated by a non-dominated front.
Before the HV computation, front and reference point are translated, so
that the reference point is [0, ..., 0].
"""
def weaklyDominates(point, other):
for i in range(len(point)):
if point[i] > other[i]:
return False
return True
relevantPoints = []
referencePoint = self.referencePoint
dimensions = len(referencePoint)
for point in front:
# only consider points that dominate the reference point
if weaklyDominates(point, referencePoint):
relevantPoints.append(point)
if any(referencePoint):
# shift points so that referencePoint == [0, ..., 0]
# this way the reference point doesn't have to be explicitly used
# in the HV computation
for j in range(len(relevantPoints)):
relevantPoints[j] = [relevantPoints[j][i] - referencePoint[i] for i in range(dimensions)]
self.preProcess(relevantPoints)
bounds = [-1.0e308] * dimensions
hyperVolume = self.hvRecursive(dimensions - 1, len(relevantPoints), bounds)
return hyperVolume
def hvRecursive(self, dimIndex, length, bounds):
"""Recursive call to hypervolume calculation.
In contrast to the paper, the code assumes that the reference point
is [0, ..., 0]. This allows the avoidance of a few operations.
"""
hvol = 0.0
sentinel = self.list.sentinel
if length == 0:
return hvol
elif dimIndex == 0:
# special case: only one dimension
# why using hypervolume at all?
return -sentinel.next[0].cargo[0]
elif dimIndex == 1:
# special case: two dimensions, end recursion
q = sentinel.next[1]
h = q.cargo[0]
p = q.next[1]
while p is not sentinel:
pCargo = p.cargo
hvol += h * (q.cargo[1] - pCargo[1])
if pCargo[0] < h:
h = pCargo[0]
q = p
p = q.next[1]
hvol += h * q.cargo[1]
return hvol
else:
remove = self.list.remove
reinsert = self.list.reinsert
hvRecursive = self.hvRecursive
p = sentinel
q = p.prev[dimIndex]
while q.cargo is not None:
if q.ignore < dimIndex:
q.ignore = 0
q = q.prev[dimIndex]
q = p.prev[dimIndex]
while length > 1 and (
q.cargo[dimIndex] > bounds[dimIndex] or q.prev[dimIndex].cargo[dimIndex] >= bounds[dimIndex]):
p = q
remove(p, dimIndex, bounds)
q = p.prev[dimIndex]
length -= 1
qArea = q.area
qCargo = q.cargo
qPrevDimIndex = q.prev[dimIndex]
if length > 1:
hvol = qPrevDimIndex.volume[dimIndex] + qPrevDimIndex.area[dimIndex] * (
qCargo[dimIndex] - qPrevDimIndex.cargo[dimIndex])
else:
qArea[0] = 1
qArea[1:dimIndex + 1] = [qArea[i] * -qCargo[i] for i in range(dimIndex)]
q.volume[dimIndex] = hvol
if q.ignore >= dimIndex:
qArea[dimIndex] = qPrevDimIndex.area[dimIndex]
else:
qArea[dimIndex] = hvRecursive(dimIndex - 1, length, bounds)
if qArea[dimIndex] <= qPrevDimIndex.area[dimIndex]:
q.ignore = dimIndex
while p is not sentinel:
pCargoDimIndex = p.cargo[dimIndex]
hvol += q.area[dimIndex] * (pCargoDimIndex - q.cargo[dimIndex])
bounds[dimIndex] = pCargoDimIndex
reinsert(p, dimIndex, bounds)
length += 1
q = p
p = p.next[dimIndex]
q.volume[dimIndex] = hvol
if q.ignore >= dimIndex:
q.area[dimIndex] = q.prev[dimIndex].area[dimIndex]
else:
q.area[dimIndex] = hvRecursive(dimIndex - 1, length, bounds)
if q.area[dimIndex] <= q.prev[dimIndex].area[dimIndex]:
q.ignore = dimIndex
hvol -= q.area[dimIndex] * q.cargo[dimIndex]
return hvol
def preProcess(self, front):
"""Sets up the list data structure needed for calculation."""
dimensions = len(self.referencePoint)
nodeList = MultiList(dimensions)
nodes = [MultiList.Node(dimensions, point) for point in front]
for i in range(dimensions):
self.sortByDimension(nodes, i)
nodeList.extend(nodes, i)
self.list = nodeList
def sortByDimension(self, nodes, i):
"""Sorts the list of nodes by the i-th value of the contained points."""
# build a list of tuples of (point[i], node)
decorated = [(node.cargo[i], index, node) for index, node in enumerate(nodes)]
# sort by this value
decorated.sort()
# write back to original list
nodes[:] = [node for (_, _, node) in decorated]
class MultiList:
"""A special data structure needed by FonsecaHyperVolume.
It consists of several doubly linked lists that share common nodes. So,
every node has multiple predecessors and successors, one in every list.
"""
class Node:
def __init__(self, numberLists, cargo=None):
self.cargo = cargo
self.next = [None] * numberLists
self.prev = [None] * numberLists
self.ignore = 0
self.area = [0.0] * numberLists
self.volume = [0.0] * numberLists
def __str__(self):
return str(self.cargo)
def __init__(self, numberLists):
"""Constructor.
Builds 'numberLists' doubly linked lists.
"""
self.numberLists = numberLists
self.sentinel = MultiList.Node(numberLists)
self.sentinel.next = [self.sentinel] * numberLists
self.sentinel.prev = [self.sentinel] * numberLists
def __str__(self):
strings = []
for i in range(self.numberLists):
currentList = []
node = self.sentinel.next[i]
while node != self.sentinel:
currentList.append(str(node))
node = node.next[i]
strings.append(str(currentList))
stringRepr = ""
for string in strings:
stringRepr += string + "\n"
return stringRepr
def __len__(self):
"""Returns the number of lists that are included in this MultiList."""
return self.numberLists
def getLength(self, i):
"""Returns the length of the i-th list."""
length = 0
sentinel = self.sentinel
node = sentinel.next[i]
while node != sentinel:
length += 1
node = node.next[i]
return length
def append(self, node, index):
"""Appends a node to the end of the list at the given index."""
lastButOne = self.sentinel.prev[index]
node.next[index] = self.sentinel
node.prev[index] = lastButOne
# set the last element as the new one
self.sentinel.prev[index] = node
lastButOne.next[index] = node
def extend(self, nodes, index):
"""Extends the list at the given index with the nodes."""
sentinel = self.sentinel
for node in nodes:
lastButOne = sentinel.prev[index]
node.next[index] = sentinel
node.prev[index] = lastButOne
# set the last element as the new one
sentinel.prev[index] = node
lastButOne.next[index] = node
def remove(self, node, index, bounds):
"""Removes and returns 'node' from all lists in [0, 'index'[."""
for i in range(index):
predecessor = node.prev[i]
successor = node.next[i]
predecessor.next[i] = successor
successor.prev[i] = predecessor
if bounds[i] > node.cargo[i]:
bounds[i] = node.cargo[i]
return node
def reinsert(self, node, index, bounds):
"""
Inserts 'node' at the position it had in all lists in [0, 'index'[
before it was removed. This method assumes that the next and previous
nodes of the node that is reinserted are in the list.
"""
for i in range(index):
node.prev[i].next[i] = node
node.next[i].prev[i] = node
if bounds[i] > node.cargo[i]:
bounds[i] = node.cargo[i]
if __name__ == "__main__":
# Example:
referencePoint = [2, 2, 2]
hv = HyperVolume(referencePoint)
front = [[1, 0, 1], [0, 1, 0]]
volume = hv.compute(front)