forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
conv2d_transpose_test.ts
143 lines (119 loc) · 4.64 KB
/
conv2d_transpose_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/**
* @license
* Copyright 2017 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '../index';
import {ALL_ENVS, expectArraysClose} from '../test_util';
import {describeWithFlags} from '../jasmine_util';
import {Rank} from '../types';
describeWithFlags('conv2dTranspose', ALL_ENVS, () => {
it('input=2x2x1,d2=1,f=2,s=1,p=0', () => {
const origInputDepth = 1;
const origOutputDepth = 1;
const inputShape: [number, number, number] = [1, 1, origOutputDepth];
const fSize = 2;
const origPad = 0;
const origStride = 1;
const x = tf.tensor3d([2], inputShape);
const w = tf.tensor4d(
[3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]);
const result = tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad);
const expected = [6, 2, 10, 0];
expect(result.shape).toEqual([2, 2, 1]);
expectArraysClose(result, expected);
});
it('input=2x2x1,d2=1,f=2,s=1,p=0, batch=2', () => {
const origInputDepth = 1;
const origOutputDepth = 1;
const inputShape: [number, number, number, number] =
[2, 1, 1, origOutputDepth];
const fSize = 2;
const origPad = 0;
const origStride = 1;
const x = tf.tensor4d([2, 3], inputShape);
const w = tf.tensor4d(
[3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]);
const result = tf.conv2dTranspose(x, w, [2, 2, 2, 1], origStride, origPad);
const expected = [6, 2, 10, 0, 9, 3, 15, 0];
expect(result.shape).toEqual([2, 2, 2, 1]);
expectArraysClose(result, expected);
});
it('throws when x is not rank 3', () => {
const origInputDepth = 1;
const origOutputDepth = 1;
const fSize = 2;
const origPad = 0;
const origStride = 1;
// tslint:disable-next-line:no-any
const x: any = tf.tensor2d([2, 2], [2, 1]);
const w = tf.tensor4d(
[3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]);
expect(() => tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad))
.toThrowError();
});
it('throws when weights is not rank 4', () => {
const origInputDepth = 1;
const origOutputDepth = 1;
const inputShape: [number, number, number] = [1, 1, origOutputDepth];
const fSize = 2;
const origPad = 0;
const origStride = 1;
const x = tf.tensor3d([2], inputShape);
// tslint:disable-next-line:no-any
const w: any = tf.tensor3d([3, 1, 5, 0], [fSize, fSize, origInputDepth]);
expect(() => tf.conv2dTranspose(x, w, [2, 2, 1], origStride, origPad))
.toThrowError();
});
it('throws when x depth does not match weights original output depth', () => {
const origInputDepth = 1;
const origOutputDepth = 2;
const wrongOrigOutputDepth = 3;
const inputShape: [number, number, number] = [1, 1, origOutputDepth];
const fSize = 2;
const origPad = 0;
const origStride = 1;
const x = tf.tensor3d([2, 2], inputShape);
const w = tf.randomNormal<Rank.R4>(
[fSize, fSize, origInputDepth, wrongOrigOutputDepth]);
expect(() => tf.conv2dTranspose(x, w, [2, 2, 2], origStride, origPad))
.toThrowError();
});
it('throws when passed x as a non-tensor', () => {
const origInputDepth = 1;
const origOutputDepth = 1;
const fSize = 2;
const origPad = 0;
const origStride = 1;
const w = tf.tensor4d(
[3, 1, 5, 0], [fSize, fSize, origInputDepth, origOutputDepth]);
expect(
() => tf.conv2dTranspose(
{} as tf.Tensor3D, w, [2, 2, 1], origStride, origPad))
.toThrowError(
/Argument 'x' passed to 'conv2dTranspose' must be a Tensor/);
});
it('throws when passed filter as a non-tensor', () => {
const origOutputDepth = 1;
const inputShape: [number, number, number] = [1, 1, origOutputDepth];
const origPad = 0;
const origStride = 1;
const x = tf.tensor3d([2], inputShape);
expect(
() => tf.conv2dTranspose(
x, {} as tf.Tensor4D, [2, 2, 1], origStride, origPad))
.toThrowError(
/Argument 'filter' passed to 'conv2dTranspose' must be a Tensor/);
});
});