forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlstm.ts
110 lines (101 loc) · 3.67 KB
/
lstm.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {doc} from '../doc';
import {Scalar, Tensor1D, Tensor2D} from '../tensor';
import * as util from '../util';
import {operation} from './operation';
/**
* @docalias (data: Tensor2D, c: Tensor2D, h: Tensor2D): [Tensor2D, Tensor2D]
*/
export type LSTMCellFunc = {
(data: Tensor2D, c: Tensor2D, h: Tensor2D): [Tensor2D, Tensor2D];
};
export class LSTMOps {
/**
* Computes the next states and outputs of a stack of LSTMCells.
*
* Each cell output is used as input to the next cell.
*
* Returns `[cellState, cellOutput]`.
*
* Derived from tf.contrib.rn.MultiRNNCell.
*
* @param lstmCells Array of LSTMCell functions.
* @param data The input to the cell.
* @param c Array of previous cell states.
* @param h Array of previous cell outputs.
*/
@doc({heading: 'Operations', subheading: 'RNN'})
@operation
static multiRNNCell(
lstmCells: LSTMCellFunc[], data: Tensor2D, c: Tensor2D[], h: Tensor2D[]):
[Tensor2D[], Tensor2D[]] {
util.assertArgumentsAreTensors({data, c, h}, 'multiRNNCell');
let input = data;
const newStates = [];
for (let i = 0; i < lstmCells.length; i++) {
const output = lstmCells[i](input, c[i], h[i]);
newStates.push(output[0]);
newStates.push(output[1]);
input = output[1];
}
const newC: Tensor2D[] = [];
const newH: Tensor2D[] = [];
for (let i = 0; i < newStates.length; i += 2) {
newC.push(newStates[i]);
newH.push(newStates[i + 1]);
}
return [newC, newH];
}
/**
* Computes the next state and output of a BasicLSTMCell.
*
* Returns `[newC, newH]`.
*
* Derived from tf.contrib.rnn.BasicLSTMCell.
*
* @param forgetBias Forget bias for the cell.
* @param lstmKernel The weights for the cell.
* @param lstmBias The bias for the cell.
* @param data The input to the cell.
* @param c Previous cell state.
* @param h Previous cell output.
*/
@doc({heading: 'Operations', subheading: 'RNN'})
@operation
static basicLSTMCell(
forgetBias: Scalar, lstmKernel: Tensor2D, lstmBias: Tensor1D,
data: Tensor2D, c: Tensor2D, h: Tensor2D): [Tensor2D, Tensor2D] {
util.assertArgumentsAreTensors(
{forgetBias, lstmKernel, lstmBias, data, c, h}, 'basicLSTMCell');
const combined = data.concat(h, 1);
const weighted = combined.matMul(lstmKernel);
const res = weighted.add(lstmBias) as Tensor2D;
// i = input_gate, j = new_input, f = forget_gate, o = output_gate
const batchSize = res.shape[0];
const sliceCols = res.shape[1] / 4;
const sliceSize: [number, number] = [batchSize, sliceCols];
const i = res.slice([0, 0], sliceSize);
const j = res.slice([0, sliceCols], sliceSize);
const f = res.slice([0, sliceCols * 2], sliceSize);
const o = res.slice([0, sliceCols * 3], sliceSize);
const newC = i.sigmoid().mulStrict(j.tanh()).addStrict(
c.mulStrict(forgetBias.add(f).sigmoid() as Tensor2D));
const newH = newC.tanh().mulStrict(o.sigmoid());
return [newC, newH];
}
}