forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rand_test.ts
70 lines (62 loc) · 2.3 KB
/
rand_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/**
* @license
* Copyright 2017 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {MPRandGauss} from './rand';
import {expectArrayInMeanStdRange, jarqueBeraNormalityTest} from './rand_util';
function isFloat(n: number): boolean {
return Number(n) === n && n % 1 !== 0;
}
describe('MPRandGauss', () => {
const EPSILON = 0.05;
const SEED = 2002;
it('should default to float32 numbers', () => {
const rand = new MPRandGauss(0, 1.5);
expect(isFloat(rand.nextValue())).toBe(true);
});
it('should handle create a mean/stdv of float32 numbers', () => {
const rand =
new MPRandGauss(0, 1.5, 'float32', false /* truncated */, SEED);
const values = [];
const size = 10000;
for (let i = 0; i < size; i++) {
values.push(rand.nextValue());
}
expectArrayInMeanStdRange(values, 0, 1.5, EPSILON);
jarqueBeraNormalityTest(values);
});
it('should handle int32 numbers', () => {
const rand = new MPRandGauss(0, 1, 'int32');
expect(isFloat(rand.nextValue())).toBe(false);
});
it('should handle create a mean/stdv of int32 numbers', () => {
const rand = new MPRandGauss(0, 2, 'int32', false /* truncated */, SEED);
const values = [];
const size = 10000;
for (let i = 0; i < size; i++) {
values.push(rand.nextValue());
}
expectArrayInMeanStdRange(values, 0, 2, EPSILON);
jarqueBeraNormalityTest(values);
});
it('Should not have a more than 2x std-d from mean for truncated values',
() => {
const stdv = 1.5;
const rand = new MPRandGauss(0, stdv, 'float32', true /* truncated */);
for (let i = 0; i < 1000; i++) {
expect(Math.abs(rand.nextValue())).toBeLessThan(stdv * 2);
}
});
});