forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transpose_test.ts
70 lines (59 loc) · 2.47 KB
/
transpose_test.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
/**
* @license
* Copyright 2017 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as tf from '../index';
// tslint:disable-next-line:max-line-length
import {ALL_ENVS, expectArraysClose} from '../test_util';
import {describeWithFlags} from '../jasmine_util';
describeWithFlags('transpose', ALL_ENVS, () => {
it('2D (no change)', () => {
const t = tf.tensor2d([1, 11, 2, 22, 3, 33, 4, 44], [2, 4]);
const t2 = tf.transpose(t, [0, 1]);
expect(t2.shape).toEqual(t.shape);
expectArraysClose(t2, t);
});
it('2D (transpose)', () => {
const t = tf.tensor2d([1, 11, 2, 22, 3, 33, 4, 44], [2, 4]);
const t2 = tf.transpose(t, [1, 0]);
expect(t2.shape).toEqual([4, 2]);
expectArraysClose(t2, [1, 3, 11, 33, 2, 4, 22, 44]);
});
it('3D [r, c, d] => [d, r, c]', () => {
const t = tf.tensor3d([1, 11, 2, 22, 3, 33, 4, 44], [2, 2, 2]);
const t2 = tf.transpose(t, [2, 0, 1]);
expect(t2.shape).toEqual([2, 2, 2]);
expectArraysClose(t2, [1, 2, 3, 4, 11, 22, 33, 44]);
});
it('3D [r, c, d] => [d, c, r]', () => {
const t = tf.tensor3d([1, 11, 2, 22, 3, 33, 4, 44], [2, 2, 2]);
const t2 = tf.transpose(t, [2, 1, 0]);
expect(t2.shape).toEqual([2, 2, 2]);
expectArraysClose(t2, [1, 3, 2, 4, 11, 33, 22, 44]);
});
it('gradient 3D [r, c, d] => [d, c, r]', () => {
const t = tf.tensor3d([1, 11, 2, 22, 3, 33, 4, 44], [2, 2, 2]);
const perm = [2, 1, 0];
const dy = tf.tensor3d([111, 211, 121, 221, 112, 212, 122, 222], [2, 2, 2]);
const dt = tf.grad(t => t.transpose(perm))(t, dy);
expect(dt.shape).toEqual(t.shape);
expect(dt.dtype).toEqual('float32');
expectArraysClose(dt, [111, 112, 121, 122, 211, 212, 221, 222]);
});
it('throws when passed a non-tensor', () => {
expect(() => tf.transpose({} as tf.Tensor))
.toThrowError(/Argument 'x' passed to 'transpose' must be a Tensor/);
});
});