forked from tensorflow/tfjs-core
-
Notifications
You must be signed in to change notification settings - Fork 0
/
adagrad_optimizer.ts
90 lines (80 loc) · 2.98 KB
/
adagrad_optimizer.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import {ENV} from '../environment';
import {keep, tidy} from '../globals';
import {fill, scalar} from '../ops/ops';
// tslint:disable-next-line:max-line-length
import {ConfigDict, Serializable, SerializableConstructor, SerializationMap} from '../serialization';
import {Scalar} from '../tensor';
import {NamedVariableMap} from '../types';
import {Optimizer} from './optimizer';
/** @doclink Optimizer */
export class AdagradOptimizer extends Optimizer {
static className = 'AdagradOptimizer';
private c: Scalar;
private epsilon: Scalar;
private accumulatedGrads: NamedVariableMap = {};
constructor(
protected learningRate: number, private initialAccumulatorValue = 0.1) {
super();
this.c = keep(scalar(-learningRate));
this.epsilon = keep(scalar(1e-8));
}
applyGradients(variableGradients: NamedVariableMap) {
for (const variableName in variableGradients) {
const value = ENV.engine.registeredVariables[variableName];
if (this.accumulatedGrads[variableName] == null) {
const trainable = false;
tidy(() => {
this.accumulatedGrads[variableName] =
fill(value.shape, this.initialAccumulatorValue)
.variable(trainable);
});
}
const gradient = variableGradients[variableName];
const accumulatedGrad = this.accumulatedGrads[variableName];
tidy(() => {
const newAccumulatedGrad = accumulatedGrad.add(gradient.square());
this.accumulatedGrads[variableName].assign(newAccumulatedGrad);
const newValue =
this.c
.mul(gradient.div(newAccumulatedGrad.add(this.epsilon).sqrt()))
.add(value);
value.assign(newValue);
});
}
}
dispose() {
this.epsilon.dispose();
this.c.dispose();
if (this.accumulatedGrads != null) {
Object.keys(this.accumulatedGrads)
.forEach(name => this.accumulatedGrads[name].dispose());
}
}
getConfig(): ConfigDict {
return {
learningRate: this.learningRate,
initialAccumulatorValue: this.initialAccumulatorValue,
};
}
static fromConfig<T extends Serializable>(
cls: SerializableConstructor<T>, config: ConfigDict): T {
return new cls(config.learningRate, config.initialAccumulatorValue);
}
}
SerializationMap.register(AdagradOptimizer);