forked from NuclearGeekETH/NuclearGeek-Flux-Capacitor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
276 lines (238 loc) · 8.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# First run these commands if using Windows and installing manually:
#
# pip install git+https://github.com/huggingface/diffusers.git
# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# pip install python-dotenv transformers accelerate sentencepiece protobuf optimum-quanto gradio
import os
import torch
import gradio as gr
from diffusers import FluxPipeline, AutoPipelineForImage2Image
from diffusers.utils import load_image
from huggingface_hub import login
from optimum.quanto import freeze, qfloat8, qint4, quantize
from dotenv import load_dotenv
load_dotenv()
hk_token = os.getenv('HF_TOKEN')
login(token=hk_token)
pipe_dev = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe_schnell = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
# pipe_img2img = AutoPipelineForImage2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16, use_safetensors=True)
# save some VRAM by offloading the model to CPU, disable this if you have enough gpu power
pipe_dev.enable_model_cpu_offload()
pipe_schnell.enable_model_cpu_offload()
# pipe_img2img.enable_model_cpu_offload()
# Memory-efficient Diffusion Transformers with Quanto and Diffusers
# https://huggingface.co/blog/quanto-diffusers
# Dev Versions
print("Running transformer quantize DEV")
# Toggle whichever quantize method will work better for your system:
quantize(pipe_dev.transformer, weights=qfloat8)
# quantize(pipe.transformer, weights=qint4, exclude="proj_out")
print("Running transformer freeze DEV")
freeze(pipe_dev.transformer)
print("Running text_encoder quantize DEV")
quantize(pipe_dev.text_encoder, weights=qfloat8)
# quantize(pipe.text_encoder, weights=qint4, exclude="proj_out")
print("Running text_encoder freeze DEV")
freeze(pipe_dev.text_encoder)
# # Dev Versions
# print("Running transformer quantize DEV")
# # Toggle whichever quantize method will work better for your system:
# quantize(pipe_img2img.transformer, weights=qfloat8)
# # quantize(pipe.transformer, weights=qint4, exclude="proj_out")
# print("Running transformer freeze DEV")
# freeze(pipe_img2img.transformer)
# print("Running text_encoder quantize DEV")
# quantize(pipe_img2img.text_encoder, weights=qfloat8)
# # quantize(pipe.text_encoder, weights=qint4, exclude="proj_out")
# print("Running text_encoder freeze DEV")
# freeze(pipe_img2img.text_encoder)
# Schnell Versions
print("Running transformer quantize SCHNELL")
# Toggle whichever quantize method will work better for your system:
quantize(pipe_schnell.transformer, weights=qfloat8)
# quantize(pipe.transformer, weights=qint4, exclude="proj_out")
print("Running transformer freeze SCHNELL")
freeze(pipe_schnell.transformer)
print("Running text_encoder quantize SCHNELL")
quantize(pipe_schnell.text_encoder, weights=qfloat8)
# quantize(pipe.text_encoder, weights=qint4, exclude="proj_out")
print("Running text_encoder freeze SCHNELL")
freeze(pipe_schnell.text_encoder)
# Generate Dev Image
def gen_image_dev(prompt, steps, height, width, seed, guidance_scale):
print("Generating...")
image = pipe_dev(
prompt,
height=int(height),
width=int(width),
guidance_scale=int(guidance_scale),
output_type="pil",
num_inference_steps=int(steps),
max_sequence_length=512,
generator=torch.Generator("cuda").manual_seed(int(seed))
).images[0]
print("Saving...")
return image
# image.save(f"{prompt}.png")
# Generate Schnell Image
def gen_image_schnell(prompt, steps, height, width, seed, guidance_scale):
print("Generating...")
image = pipe_schnell(
prompt,
height=int(height),
width=int(width),
guidance_scale=int(guidance_scale),
output_type="pil",
num_inference_steps=int(steps),
max_sequence_length=256,
generator=torch.Generator("cuda").manual_seed(int(seed))
).images[0]
print("Saving...")
return image
# # Generate Dev Image
# def gen_image_to_image_dev(prompt, init_image, steps, height, width, seed, guidance_scale):
# print("Generating...")
# init_image = load_image(init_image)
# image = pipe_img2img(
# prompt,
# image=init_image,
# height=int(height),
# width=int(width),
# guidance_scale=int(guidance_scale),
# output_type="pil",
# num_inference_steps=int(steps),
# max_sequence_length=512,
# generator=torch.Generator("cuda").manual_seed(int(seed))
# ).images[0]
# print("Saving...")
# return image
# Create Gradio webapp
with gr.Blocks(theme=gr.themes.Soft(), title="NuclearGeek's Flux Capacitor") as demo:
gr.Markdown(f"<h1 style='text-align: center; display:block'>{'NuclearGeek's Flux Capacitor'}</h1>")
# Dev Tab
with gr.Tab("FLUX.1-dev"):
with gr.Row():
steps_slider = gr.Slider(
0,100,
label = "Steps",
value = 50,
render = False
)
height_slider = gr.Slider(
0,2048,
label = "Height",
value = 1024,
render = False
)
width_slider = gr.Slider(
0,2048,
label = "Width",
value = 1024,
render = False
)
seed_slider = gr.Slider(
0,99999999,
label = "Seed",
value = 0,
render = False
)
guidance_slider = gr.Slider(
0,20,
label = "Guidance Scale",
value = 3.5,
render = False
)
chat = gr.Interface(
fn = gen_image_dev,
inputs = [gr.Text(label="Input Prompt"), steps_slider, height_slider, width_slider, seed_slider, guidance_slider],
outputs=[gr.Image(type="numpy", label="Output Image")]
)
# Schnell Tab
with gr.Tab("FLUX.1-schnell"):
with gr.Row():
steps_slider = gr.Slider(
0,100,
label = "Steps",
value = 4,
render = False
)
height_slider = gr.Slider(
0,2048,
label = "Height",
value = 1024,
render = False
)
width_slider = gr.Slider(
0,2048,
label = "Width",
value = 1024,
render = False
)
seed_slider = gr.Slider(
0,99999999,
label = "Seed",
value = 0,
render = False
)
guidance_slider = gr.Slider(
0,20,
label = "Guidance Scale",
value = 0,
render = False
)
chat = gr.Interface(
fn = gen_image_schnell,
inputs = [gr.Text(label="Input Prompt"), steps_slider, height_slider, width_slider, seed_slider, guidance_slider],
outputs=[gr.Image(type="numpy", label="Output Image")]
)
# with gr.Tab("Image-to-Image"):
# with gr.Row():
# image = gr.Image(
# label = "Image Input",
# type = "filepath",
# render = False,
# height = "512",
# width = "512",
# )
# steps_slider = gr.Slider(
# 0,100,
# label = "Steps",
# value = 50,
# render = False
# )
# height_slider = gr.Slider(
# 0,2048,
# label = "Height",
# value = 1024,
# render = False
# )
# width_slider = gr.Slider(
# 0,2048,
# label = "Width",
# value = 1024,
# render = False
# )
# seed_slider = gr.Slider(
# 0,99999999,
# label = "Seed",
# value = 0,
# render = False
# )
# guidance_slider = gr.Slider(
# 0,20,
# label = "Guidance Scale",
# value = 3.5,
# render = False
# )
# chat = gr.Interface(
# fn = gen_image_to_image_dev,
# inputs = [gr.Text(label="Input Prompt"), image, steps_slider, height_slider, width_slider, seed_slider, guidance_slider],
# outputs=[gr.Image(type="numpy", label="Output Image")]
# )
if __name__ == "__main__":
demo.queue()
# # Toggle this on if you want to share your app, change the username and password
# demo.launch(server_port=7862, share=True, auth=("nuke", "password"))
# Toggle this on if you want to only run local
demo.launch()