diff --git a/README.md b/README.md index 6ec17ca9c..ea33828dc 100644 --- a/README.md +++ b/README.md @@ -16,6 +16,11 @@ leetcode 题解,记录自己的 leecode 解题之路。 > 只有熟练掌握基础的数据结构与算法,才能对复杂问题迎刃有余 +## 食用说明 + +- 经典题目的解析的目录部分,前面有🆕的代表是最新更新的 +- 将来会在这里更新anki卡片 + ## 精彩预告 @@ -79,6 +84,8 @@ leetcode 题解,记录自己的 leecode 解题之路。 - [900.rle-iterator](./problems/900.rle-iterator.md) - [322.coin-change](./problems/322.coin-change.md) - [518.coin-change-2](./problems/518.coin-change-2.md) +- 🆕 [11.container-with-most-water](./problems/11.container-with-most-water.md) +- 🆕 [875.koko-eating-bananas](./problems/875.koko-eating-bananas.md) #### 困难难度 diff --git a/assets/problems/11.container-with-most-water-question.jpg b/assets/problems/11.container-with-most-water-question.jpg new file mode 100644 index 000000000..7661efe42 Binary files /dev/null and b/assets/problems/11.container-with-most-water-question.jpg differ diff --git a/problems/11.container-with-most-water.md b/problems/11.container-with-most-water.md new file mode 100644 index 000000000..5e4dc9b52 --- /dev/null +++ b/problems/11.container-with-most-water.md @@ -0,0 +1,138 @@ +## 题目地址 +https://leetcode.com/problems/container-with-most-water/description/ + +## 题目描述 +``` +Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water. + +Note: You may not slant the container and n is at least 2. +``` + +![11.container-with-most-water-question](../assets/problems/11.container-with-most-water-question.jpg) +``` + +The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49. + + + +Example: + +Input: [1,8,6,2,5,4,8,3,7] +Output: 49 +``` + +## 思路 +符合直觉的解法是,我们可以对两两进行求解,计算可以承载的水量。 然后不断更新最大值,最后返回最大值即可。 +这种解法,需要两层循环,时间复杂度是O(n^2) + +eg: + +```js + // 这个解法比较暴力,效率比较低 + // 时间复杂度是O(n^2) + let max = 0; + for(let i = 0; i < height.length; i++) { + for(let j = i + 1; j < height.length; j++) { + const currentArea = Math.abs(i - j) * Math.min(height[i], height[j]); + if (currentArea > max) { + max = currentArea; + } + } + } + return max; + +``` + +> 这种符合直觉的解法有点像冒泡排序, 大家可以稍微类比一下 + +那么有没有更加优的解法呢?我们来换个角度来思考这个问题,上述的解法是通过两两组合,这无疑是完备的, +那我门是否可以先计算长度为n的面积,然后计算长度为n-1的面积,... 计算长度为1的面积。 这样去不断更新最大值呢? +很显然这种解法也是完备的,但是似乎时间复杂度还是O(n ^ 2), 不要着急。 + +考虑一下,如果我们计算n-1长度的面积的时候,是直接直接排除一半的结果的。 + +如图: + +![11.container-with-most-water](../assets/problems/11.container-with-most-water.png) + + +比如我们计算n面积的时候,假如左侧的线段高度比右侧的高度低,那么我们通过左移右指针来将长度缩短为n-1的做法是没有意义的, +因为`新的形成的面积变成了(n-1) * heightOfLeft 这个面积一定比刚才的长度为n的面积nn * heightOfLeft 小` + +也就是说最大面积`一定是当前的面积或者通过移动短的线段得到`。 +## 关键点解析 + +- 双指针优化时间复杂度 + + +## 代码 + +```js +/* + * @lc app=leetcode id=11 lang=javascript + * + * [11] Container With Most Water + * + * https://leetcode.com/problems/container-with-most-water/description/ + * + * algorithms + * Medium (42.86%) + * Total Accepted: 344.3K + * Total Submissions: 790.1K + * Testcase Example: '[1,8,6,2,5,4,8,3,7]' + * + * Given n non-negative integers a1, a2, ..., an , where each represents a + * point at coordinate (i, ai). n vertical lines are drawn such that the two + * endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together + * with x-axis forms a container, such that the container contains the most + * water. + * + * Note: You may not slant the container and n is at least 2. + * + * + * + * + * + * The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In + * this case, the max area of water (blue section) the container can contain is + * 49. + * + * + * + * Example: + * + * + * Input: [1,8,6,2,5,4,8,3,7] + * Output: 49 + * + */ +/** + * @param {number[]} height + * @return {number} + */ +var maxArea = function(height) { + if (!height || height.length <= 1) return 0; + + // 双指针来进行优化 + // 时间复杂度是O(n) + let leftPos = 0; + let rightPos = height.length - 1; + let max = 0; + while(leftPos < rightPos) { + + const currentArea = Math.abs(leftPos - rightPos) * Math.min(height[leftPos] , height[rightPos]); + if (currentArea > max) { + max = currentArea; + } + // 更新小的 + if (height[leftPos] < height[rightPos]) { + leftPos++; + } else { // 如果相等就随便了 + rightPos--; + } + } + + return max; +}; +``` + diff --git a/problems/875.koko-eating-bananas.md b/problems/875.koko-eating-bananas.md new file mode 100644 index 000000000..197effc57 --- /dev/null +++ b/problems/875.koko-eating-bananas.md @@ -0,0 +1,155 @@ +## 题目地址 +https://leetcode.com/problems/koko-eating-bananas/description/ + +## 题目描述 +``` +Koko loves to eat bananas. There are N piles of bananas, the i-th pile has piles[i] bananas. The guards have gone and will come back in H hours. + +Koko can decide her bananas-per-hour eating speed of K. Each hour, she chooses some pile of bananas, and eats K bananas from that pile. If the pile has less than K bananas, she eats all of them instead, and won't eat any more bananas during this hour. + +Koko likes to eat slowly, but still wants to finish eating all the bananas before the guards come back. + +Return the minimum integer K such that she can eat all the bananas within H hours. + + + +Example 1: + +Input: piles = [3,6,7,11], H = 8 +Output: 4 +Example 2: + +Input: piles = [30,11,23,4,20], H = 5 +Output: 30 +Example 3: + +Input: piles = [30,11,23,4,20], H = 6 +Output: 23 + + +Note: + +1 <= piles.length <= 10^4 +piles.length <= H <= 10^9 +1 <= piles[i] <= 10^9 + +``` + +## 思路 +符合直觉的做法是,选择最大的堆的香蕉数,然后试一下能不能行,如果不行则直接返回上次计算的结果, +如果行,我们减少1个香蕉,试试行不行,依次类推。计算出刚好不行的即可。这种解法的时间复杂度是O(n)。 + +这道题如果能看出来是二分法解决,那么其实很简单。为什么它是二分问题呢? +我这里画了个图,我相信你看了就明白了。 + +![koko-eating-bananas](../assets/problems/koko-eating-bananas.png) + +## 关键点解析 + +- 二分查找 + + +## 代码 + +```js +/* + * @lc app=leetcode id=875 lang=javascript + * + * [875] Koko Eating Bananas + * + * https://leetcode.com/problems/koko-eating-bananas/description/ + * + * algorithms + * Medium (44.51%) + * Total Accepted: 11.3K + * Total Submissions: 24.8K + * Testcase Example: '[3,6,7,11]\n8' + * + * Koko loves to eat bananas.  There are N piles of bananas, the i-th pile has + * piles[i] bananas.  The guards have gone and will come back in H hours. + * + * Koko can decide her bananas-per-hour eating speed of K.  Each hour, she + * chooses some pile of bananas, and eats K bananas from that pile.  If the + * pile has less than K bananas, she eats all of them instead, and won't eat + * any more bananas during this hour. + * + * Koko likes to eat slowly, but still wants to finish eating all the bananas + * before the guards come back. + * + * Return the minimum integer K such that she can eat all the bananas within H + * hours. + * + * + * + * + * + * + * + * Example 1: + * + * + * Input: piles = [3,6,7,11], H = 8 + * Output: 4 + * + * + * + * Example 2: + * + * + * Input: piles = [30,11,23,4,20], H = 5 + * Output: 30 + * + * + * + * Example 3: + * + * + * Input: piles = [30,11,23,4,20], H = 6 + * Output: 23 + * + * + * + * + * Note: + * + * + * 1 <= piles.length <= 10^4 + * piles.length <= H <= 10^9 + * 1 <= piles[i] <= 10^9 + * + * + * + * + * + */ + + function canEatAllBananas(piles, H, mid) { + let h = 0; + for(let pile of piles) { + h += Math.ceil(pile / mid); + } + + return h <= H; + } +/** + * @param {number[]} piles + * @param {number} H + * @return {number} + */ +var minEatingSpeed = function(piles, H) { + let lo = 1, + hi = Math.max(...piles); + + while(lo <= hi) { + let mid = lo + ((hi - lo) >> 1); + if (canEatAllBananas(piles, H, mid)) { + hi = mid - 1; + } else { + lo = mid + 1; + } + } + + return lo; // 不能选择hi +}; +``` +