-
Notifications
You must be signed in to change notification settings - Fork 3
/
vqa_model_static_cnn.py
98 lines (70 loc) · 2.98 KB
/
vqa_model_static_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""
This is the model file which has instance of encoder an decoder
functions for training,testing and evaluation of model
"""
#import tensorflow as tf
import json
from vqa_encoder import *
from vqa_decoder import *
from vqa_preprocessing import *
import copy
class vqa_model_static_cnn:
def __init__(self,config):
print("Creating the CNN Static Model")
self.config = config
self.cnn = vqa_cnn(self.config)
self.image_loader = ImageLoader('./ilsvrc_2012_mean.npy',self.config)
self.global_step = 0
def build(self):
## Build the encoder and decoder models
## Place holder fo the images and questions and we pass them to the encoder
print("Building the Model .....")
self.images = tf.placeholder(
dtype=tf.float32,
shape=[self.config.BATCH_SIZE] + self.config.IMAGE_SHAPE)
self.cnn.build(self.images)
# self.build_model()
def build_model(self):
## Assign variables that needs to be passed to variables from encoder and decoder
pass
def train(self, sess, train_data, fc_file_name, conv_file_name):
print("Training the CNN model")
epoch_count = self.config.EPOCH_COUNT
# Convolution feature map dictionary for VQA model with attention
self.conv_dict = {}
# Fully-connected feature map dictionary for VQA model without attention
self.fc_dict = {}
for _ in tqdm(list(range(train_data.num_batches)), desc='batch'):
# for _ in tqdm(list(range(self.config.NUM_BATCHES)), desc='batch'):
batch = train_data.next_batch()
image_files, image_idxs = batch
images = self.image_loader.load_images(image_files)
feed_dict = {self.images: images}
self.conv_feats, self.fc2 = sess.run([self.cnn.conv_feats, self.cnn.fc2], feed_dict=feed_dict)
## Save conv5_3 and fc2 into two dictionaries
i = 0
for idx in image_idxs:
self.conv_dict[str(idx)] = self.conv_feats[i]
self.fc_dict[str(idx)] = self.fc2[i]
i = i + 1
np.save(conv_file_name, self.conv_dict)
np.save(fc_file_name, self.fc_dict)
def save(self,file_name):
""" Save the model. """
config = self.config
data = {v.name: v.eval() for v in tf.global_variables()}
save_path = os.path.join(config.SAVE_DIR, file_name)
print((" Saving the model to %s..." % (save_path+".npy")))
np.save(save_path, data)
print("Model saved.")
def load(self, sess, model_file=None):
""" Load the model. """
config = self.config
print("Loading the model from %s..." %model_file)
data_dict = np.load(model_file).item()
count = 0
for v in tqdm(tf.global_variables()):
if v.name in data_dict.keys():
sess.run(v.assign(data_dict[v.name]))
count += 1
print("%d tensors loaded." %count)