-
Notifications
You must be signed in to change notification settings - Fork 3
/
vqa_preprocessing.py
512 lines (384 loc) · 19.9 KB
/
vqa_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
## preprocessing training data and storing it in data object
## preprocessing test data and storing it in data object
## preprocessing validation data and storing it in data object.
"""
Preporcessing contains following steps
1. Remove unnecessary words
2. Load the glove
3. Convert the words to indices in the vocabulary
4. Mask to the maximum length.
"""
import json
import numpy as np
import os
from vqa_vocabulary import Vocabulary
from tqdm import tqdm
from vqa_dataset import DataSet
import cv2
import pickle
class ImageLoader(object):
def __init__(self, mean_file,config):
self.bgr = True
self.config = config
self.scale_shape = np.array(config.IMAGE_DIMENSION, np.int32)
self.crop_shape = np.array(config.IMAGE_DIMENSION, np.int32)
self.mean = np.load(mean_file).mean(1).mean(1)
def load_image(self, image_file):
""" Load and preprocess an image. """
image = cv2.imread(image_file)
# print("Image file path : {}".format(image_file))
if self.bgr:
temp = image.swapaxes(0, 2)
temp = temp[::-1]
image = temp.swapaxes(0, 2)
image = cv2.resize(image, (self.scale_shape[0], self.scale_shape[1]))
offset = (self.scale_shape - self.crop_shape) / 2
offset = offset.astype(np.int32)
image = image[offset[0]:offset[0]+self.crop_shape[0],
offset[1]:offset[1]+self.crop_shape[1]]
image = image - self.mean
return image
def load_images(self, image_files):
""" Load and preprocess a list of images. """
images = []
for image_file in image_files:
images.append(self.load_image(image_file))
images = np.array(images, np.float32)
return images
def loadGlove(embeddingFile):
vocab = []
embedding = []
dictionary = {}
reverseDictionary = {}
count = 0
print("Loading Glove.....")
file = open(embeddingFile, 'r')
for line in file.readlines():
row = line.strip().split(' ')
vocab.append(row[0])
embedding.append(row[1:])
dictionary[row[0]] = count
reverseDictionary[count] = row[0]
count = count + 1
print('GloVe Loaded')
file.close()
print(len(vocab))
return vocab, embedding,dictionary,reverseDictionary
def get_best_confidence_answer(answer_list):
"""Gives the best confidence answer from answer list"""
best_confidence = 0.0
best_answer =""
best_answer_id = 0
##Currently just checking if answer confidence is yes. Need to pick a better answer//TODO
for answer in answer_list:
if(answer['answer_confidence'] == "yes"):
best_confidence = answer['answer_confidence']
best_answer = answer['answer']
best_answer_id = answer['answer_id']
break
return best_answer,best_answer_id
def get_top_answers(config):
"""TO get the top answers as we are classifying the answers into one of top 1000"""
print("Getting Top Answers ......")
counts = {}
train_annot = json.load(open(config.DATA_DIR + config.TRAIN_ANNOTATIONS_FILE, 'r'))
train_size = len(train_annot['annotations'])
#for i in tqdm(list(range(train_size)), desc='Answers'):
for i in range(train_size):
## Get the top 1000 best confidence answers
answer, answer_id = get_best_confidence_answer(train_annot['annotations'][i]['answers'])
counts[answer] =counts.get(answer,0) + 1
count_words = sorted([(count, w) for w, count in counts.items()], reverse=True)
# print('top answer and their counts:')
# print('\n'.join(map(str, count_words[:20])))
count = 0
for i in range(config.TOP_ANSWERS):
count += count_words[i][0]
print("Total data set with top {0} answers : {1}".format(config.TOP_ANSWERS,count))
top_answers = []
for i in range(config.TOP_ANSWERS):
top_answers.append(count_words[i][1])
## Save the top answers
print("Saving the top answers ....")
with open(config.DATA_DIR + config.TOP_ANSWERS_FILE, "wb") as fp: # Pickling
pickle.dump(top_answers, fp)
return top_answers
def prepare_train_data(config,vocabulary):
""" Prepare the data for training the model. """
print("Preparing Training Data....")
top_answers = get_top_answers(config)
answer_to_idx = {ans: idx for idx, ans in enumerate(top_answers)}
idx_to_answer = {idx: ans for idx, ans in enumerate(top_answers)}
train_annot = json.load(open(config.DATA_DIR + config.TRAIN_ANNOTATIONS_FILE, 'r'))
train_ques = json.load(open(config.DATA_DIR + config.TRAIN_QUESTIONS_FILE, 'r'))
train_size = len(train_annot['annotations'])
## Lists that need to be passed to DataSet object
image_id_list = [] ; image_file_list = []
question_id_list = [] ; question_idxs_list = [] ; question_masks_list = [] ; question_type_list = []
answer_id_list = [] ; answer_idxs_list = [] ; answer_masks_list = [] ; answer_type_list = []
for i in tqdm(list(range(train_size)), desc='training data'):
## Attributes required from questions
question_id = train_ques['questions'][i]['question_id']
image_id = train_ques['questions'][i]['image_id']
question = train_ques['questions'][i]['question']
image_file = os.path.join(config.TRAIN_IMAGE_DIR,"COCO_train2014_000000"+format(image_id,'06d')+".jpg")
## Attributes required from annotations
question_type = train_annot['annotations'][i]['question_type']
answer_type = train_annot['annotations'][i]['answer_type']
answer,answer_id = get_best_confidence_answer(train_annot['annotations'][i]['answers'])
## config.ONLY_TOP_ANSWERS, then the answer_idxs will contain the answer index in the top answers
if config.ONLY_TOP_ANSWERS:
if answer in top_answers:
## Convert question into question indexes
question_idxs_ = vocabulary.process_sentence(question)
question_num_words = len(question_idxs_)
question_idxs = np.zeros(config.MAX_QUESTION_LENGTH,dtype = np.int32)
question_masks = np.zeros(config.MAX_QUESTION_LENGTH)
# ## Right padding
# question_idxs[:question_num_words] = np.array(question_idxs_)
# question_masks[:question_num_words] = 1
## Left Padding
question_idxs[config.MAX_QUESTION_LENGTH - question_num_words:] = np.array(question_idxs_)
question_masks[config.MAX_QUESTION_LENGTH - question_num_words:] = 1
## Convert the answer into answer indexes
answer_idxs_ = answer_to_idx[answer]
answer_num_words = 1
answer_idxs = np.zeros(config.MAX_ANSWER_LENGTH, dtype=np.int32)
answer_masks = np.zeros(config.MAX_ANSWER_LENGTH)
answer_idxs[:answer_num_words] = np.array(answer_idxs_)
answer_masks[:answer_num_words] = 1
## Place the elements into their list
image_id_list.append(image_id) ; image_file_list.append(image_file)
question_id_list.append(question_id) ; question_idxs_list.append(question_idxs)
question_masks_list.append(question_masks) ; question_type_list.append(question_type)
answer_id_list.append(answer_id); answer_idxs_list.append(answer_idxs)
answer_masks_list.append(answer_masks); answer_type_list.append(answer_type)
else:
## This is used in future if we are planning to have decoder as an LSTM unit
## Convert question into question indexes
question_idxs_ = vocabulary.process_sentence(question)
question_num_words = len(question_idxs_)
question_idxs = np.zeros(config.MAX_QUESTION_LENGTH, dtype=np.int32)
question_masks = np.zeros(config.MAX_QUESTION_LENGTH)
question_idxs[:question_num_words] = np.array(question_idxs_)
question_masks[:question_num_words] = 1
## Convert the answer into answer indexes
answer_idxs_ = vocabulary.process_sentence(answer)
answer_num_words = len(answer_idxs_)
answer_idxs = np.zeros(config.MAX_ANSWER_LENGTH, dtype=np.int32)
answer_masks = np.zeros(config.MAX_ANSWER_LENGTH)
answer_idxs[:answer_num_words] = np.array(answer_idxs_)
answer_masks[:answer_num_words] = 1
## Place the elements into their list
image_id_list.append(image_id)
image_file_list.append(image_file)
question_id_list.append(question_id); question_idxs_list.append(question_idxs)
question_masks_list.append(question_masks); question_type_list.append(question_type)
answer_id_list.append(answer_id); answer_idxs_list.append(answer_idxs)
answer_masks_list.append(answer_masks); answer_type_list.append(answer_type)
image_id_list = np.array(image_id_list) ; image_file_list = np.array(image_file_list)
question_id_list = np.array(question_id_list) ; question_idxs_list = np.array(question_idxs_list)
question_masks_list = np.array(question_masks_list) ; question_type_list = np.array(question_type_list)
answer_id_list = np.array(answer_id_list) ; answer_idxs_list = np.array(answer_idxs_list)
answer_masks_list = np.array(answer_masks_list) ; answer_type_list = np.array(answer_type_list)
#print(image_id_list,question_id_list,question_idxs_list,answer_idxs_list)
print("Number of Questions = %d" %(train_size))
print("Missing words : ", vocabulary.missingWords)
print("Building the dataset...")
dataset = DataSet(image_id_list,
image_file_list,
question_id_list,
question_idxs_list,
question_masks_list,
question_type_list,
answer_id_list,
answer_idxs_list,
answer_masks_list,
answer_type_list,
config.BATCH_SIZE,
config.PHASE,
True)
print("Training Data prepared")
return dataset
def prepare_eval_data(config,vocabulary):
""" Prepare the data for training the model. """
print("Preparing Evaluation Data....")
## Get the Top answers
with open(config.DATA_DIR + config.TOP_ANSWERS_FILE, "rb") as fp: # Unpickling
top_answers = pickle.load(fp)
answer_to_idx = {ans: idx for idx, ans in enumerate(top_answers)}
idx_to_answer = {idx: ans for idx, ans in enumerate(top_answers)}
eval_annot = json.load(open(config.DATA_DIR + config.EVAL_ANNOTATIONS_FILE, 'r'))
eval_ques = json.load(open(config.DATA_DIR + config.EVAL_QUESTIONS_FILE, 'r'))
eval_size = len(eval_annot['annotations'])
## Lists that need to be passed to DataSet object
image_id_list = [] ; image_file_list = []
question_id_list = [] ; question_idxs_list = [] ; question_masks_list = [] ; question_type_list = []
answer_id_list = [] ; answer_idxs_list = [] ; answer_masks_list = [] ; answer_type_list = []
missing_questions = 0
for i in tqdm(list(range(eval_size)), desc='evaluation data'):
## Attributes required from questions
question_id = eval_ques['questions'][i]['question_id']
image_id = eval_ques['questions'][i]['image_id']
question = eval_ques['questions'][i]['question']
image_file = os.path.join(config.EVAL_IMAGE_DIR,"COCO_val2014_000000"+format(image_id,'06d')+".jpg")
## Attributes required from annotations
question_type = eval_annot['annotations'][i]['question_type']
answer_type = eval_annot['annotations'][i]['answer_type']
answer,answer_id = get_best_confidence_answer(eval_annot['annotations'][i]['answers'])
## config.ONLY_TOP_ANSWERS, then the answer_idxs will contain the answer index in the top answers
if config.ONLY_TOP_ANSWERS:
if answer in top_answers:
## Convert question into question indexes
try:
question_idxs_ = vocabulary.process_sentence(question)
except:
missing_questions +=1
continue
question_num_words = len(question_idxs_)
question_idxs = np.zeros(config.MAX_QUESTION_LENGTH,dtype = np.int32)
question_masks = np.zeros(config.MAX_QUESTION_LENGTH)
# ## Right padding
# question_idxs[:question_num_words] = np.array(question_idxs_)
# question_masks[:question_num_words] = 1
## Left Padding
question_idxs[config.MAX_QUESTION_LENGTH - question_num_words:] = np.array(question_idxs_)
question_masks[config.MAX_QUESTION_LENGTH - question_num_words:] = 1
## Convert the answer into answer indexes
answer_idxs_ = answer_to_idx[answer]
answer_num_words = 1
answer_idxs = np.zeros(config.MAX_ANSWER_LENGTH, dtype=np.int32)
answer_masks = np.zeros(config.MAX_ANSWER_LENGTH)
answer_idxs[:answer_num_words] = np.array(answer_idxs_)
answer_masks[:answer_num_words] = 1
## Place the elements into their list
image_id_list.append(image_id) ; image_file_list.append(image_file)
question_id_list.append(question_id) ; question_idxs_list.append(question_idxs)
question_masks_list.append(question_masks) ; question_type_list.append(question_type)
answer_id_list.append(answer_id); answer_idxs_list.append(answer_idxs)
answer_masks_list.append(answer_masks); answer_type_list.append(answer_type)
else:
## This is used in future if we are planning to have decoder as an LSTM unit
## Convert question into question indexes
question_idxs_ = vocabulary.process_sentence(question)
question_num_words = len(question_idxs_)
question_idxs = np.zeros(config.MAX_QUESTION_LENGTH, dtype=np.int32)
question_masks = np.zeros(config.MAX_QUESTION_LENGTH)
question_idxs[:question_num_words] = np.array(question_idxs_)
question_masks[:question_num_words] = 1
## Convert the answer into answer indexes
answer_idxs_ = vocabulary.process_sentence(answer)
answer_num_words = len(answer_idxs_)
answer_idxs = np.zeros(config.MAX_ANSWER_LENGTH, dtype=np.int32)
answer_masks = np.zeros(config.MAX_ANSWER_LENGTH)
answer_idxs[:answer_num_words] = np.array(answer_idxs_)
answer_masks[:answer_num_words] = 1
## Place the elements into their list
image_id_list.append(image_id)
image_file_list.append(image_file)
question_id_list.append(question_id); question_idxs_list.append(question_idxs)
question_masks_list.append(question_masks); question_type_list.append(question_type)
answer_id_list.append(answer_id); answer_idxs_list.append(answer_idxs)
answer_masks_list.append(answer_masks); answer_type_list.append(answer_type)
image_id_list = np.array(image_id_list) ; image_file_list = np.array(image_file_list)
question_id_list = np.array(question_id_list) ; question_idxs_list = np.array(question_idxs_list)
question_masks_list = np.array(question_masks_list) ; question_type_list = np.array(question_type_list)
answer_id_list = np.array(answer_id_list) ; answer_idxs_list = np.array(answer_idxs_list)
answer_masks_list = np.array(answer_masks_list) ; answer_type_list = np.array(answer_type_list)
#print(image_id_list,question_id_list,question_idxs_list,answer_idxs_list)
print("Number of Evaluation Questions = %d" %(eval_size))
print("Missing Questions : ", missing_questions)
print("Building the dataset...")
dataset = DataSet(image_id_list,
image_file_list,
question_id_list,
question_idxs_list,
question_masks_list,
question_type_list,
answer_id_list,
answer_idxs_list,
answer_masks_list,
answer_type_list,
config.BATCH_SIZE,
config.PHASE,
True)
print("Evaluation Data prepared")
return dataset
def prepare_test_data(config,vocabulary):
question_id_list = []; question_idxs_list = []; question_masks_list = []
quest_file = config.DATA_DIR + config.TEST_QUESTION_FILE
qF = open(quest_file,'r')
question = qF.readline()
print(question)
try:
question_idxs_ = vocabulary.process_sentence(question)
except:
print("Words not in Vocabulary... Please change the question")
exit()
question_num_words = len(question_idxs_)
question_idxs = np.zeros(config.MAX_QUESTION_LENGTH, dtype=np.int32)
question_masks = np.zeros(config.MAX_QUESTION_LENGTH)
## Left Padding
question_idxs[config.MAX_QUESTION_LENGTH - question_num_words:] = np.array(question_idxs_)
question_masks[config.MAX_QUESTION_LENGTH - question_num_words:] = 1
## Get the Image Files, Currently we will have only one
files = os.listdir(config.TEST_IMAGE_DIR)
image_file_list = [os.path.join(config.TEST_IMAGE_DIR, f) for f in files
if f.lower().endswith('.jpg') or f.lower().endswith('.jpeg')]
image_id_list = list(range(len(image_file_list)))
question_id_list.append(0)
question_idxs_list.append(question_idxs)
question_masks_list.append(question_masks)
dataset = DataSet(image_id_list,
image_file_list,
question_id_list,
question_idxs_list,
question_masks_list,
batch_size=1,phase=config.PHASE)
print("Testing Data prepared")
## Get the Top answers
with open(config.DATA_DIR + config.TOP_ANSWERS_FILE, "rb") as fp: # Unpickling
top_answers = pickle.load(fp)
return dataset,top_answers
def prepare_cnn_data(config):
files = os.listdir(config.TRAIN_IMAGE_DIR)
image_file_list = [os.path.join(config.TRAIN_IMAGE_DIR, f) for f in files
if f.lower().endswith('.jpg') or f.lower().endswith('.jpeg')]
image_id_list = [f[:-4] for f in files]
dataset = DataSet(image_id_list,
image_file_list,
batch_size=config.BATCH_SIZE, phase=config.PHASE)
print("CNN Dataset prepared")
return dataset
class image_feature_loader:
def __init__(self,config):
self.config = config
def build(self):
## Loads the numpy file
self.image_features = np.load(self.config.DATA_DIR+self.config.CONV_DATA_SET_TRAIN)
def load_image(self,image_id):
return self.image_features[()][image_id]
def load_images(self,image_ids):
images = []
for image_id in image_ids:
## Formating the image id because this is the id used while storing it in numpy
image_id = "COCO_train2014_000000"+format(image_id,'06d')
images.append(self.load_image(image_id))
images = np.array(images,np.float32)
return images
class image_feature_loader_eval:
def __init__(self,config):
self.config = config
def build(self):
## Loads the numpy file
self.image_features = np.load(self.config.DATA_DIR+self.config.CONV_DATA_SET_EVAL)
def load_image(self,image_id):
return self.image_features[()][image_id]
def load_images(self,image_ids):
images = []
for image_id in image_ids:
## Formating the image id because this is the id used while storing it in numpy
image_id = "COCO_val2014_000000"+format(image_id,'06d')
images.append(self.load_image(image_id))
images = np.array(images,np.float32)
return images