-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_source.py
134 lines (127 loc) · 6.07 KB
/
train_source.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from utils import parse_config, set_random,niiDataset
from unet import UNet
from torch.utils.data import DataLoader
import torch
import matplotlib
import os
import argparse
from test_run import test
from metrics import dice_eval
import numpy as np
import time
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
matplotlib.use('Agg')
def get_data_loader(config,dataset,target):
batch_size = config['train']['batch_size']
data_root_mms = config['train']['data_root_mms']
train_img = data_root_mms+'/train/img/{}'.format(target)
train_lab = data_root_mms+'/train/lab/{}'.format(target)
valid_img = data_root_mms+'/valid/img/{}'.format(target)
valid_lab = data_root_mms+'/valid/lab/{}'.format(target)
test_img = data_root_mms+'/test/img/{}'.format(target)
test_lab = data_root_mms+'/test/lab/{}'.format(target)
train_test = niiDataset(train_img,train_lab, dataset=dataset, target = target, phase = 'train')
train_loader = DataLoader(train_test, batch_size = batch_size,shuffle=True, drop_last=True)
val_dataset = niiDataset(valid_img,valid_lab, dataset=dataset, target = target, phase = 'valid')
valid_loader = DataLoader(val_dataset, batch_size=1,shuffle=False, drop_last=False)
test_dataset = niiDataset(test_img,test_lab, dataset=dataset, target = target, phase = 'test')
test_loader = DataLoader(test_dataset, batch_size=1,shuffle=False, drop_last=False)
return train_loader,valid_loader,test_loader
def train(config, train_loader, valid_loader, test_loader, target, list_data, current_date, save_path):
writer = SummaryWriter(
log_dir=save_path + "/tensorboard/" + '/' + str(target) + '/' + current_date, comment='')
directory_path = save_path + '/txt/' + str(target) + '/' + current_date
file_path = os.path.join(directory_path, f'{target}.txt')
if not os.path.exists(directory_path):
os.makedirs(directory_path)
with open(file_path, 'w') as file:
file.write(current_date + "\n")
# load exp_name
exp_name = config['train']['exp_name']
dataset = config['train']['dataset']
num_classes = config['network']['n_classes_mms']
# load model
device = torch.device('cuda:{}'.format(config['train']['gpu']))
iplc_model = UNet(config).to(device)
iplc_model.train()
iplc_model.initialize()
print("model initialize")
# load train details
num_epochs = config['train']['num_epochs']
valid_epochs = config['train']['valid_epoch']
j = 0
best_dice = 0.
for epoch in range(num_epochs):
iplc_model.train()
print('Epoch [%d/%d]' %(epoch, num_epochs))
current_loss = 0.
for i, (B, B_label, _,_) in tqdm(enumerate(train_loader)):
B = B.to(device).detach()
B_label = B_label.to(device).detach()
loss_seg = iplc_model.train_source(B,B_label)
current_loss += loss_seg
loss_mean = current_loss / (i + 1)
writer.add_scalar('loss', loss_mean, epoch)
if (epoch) % valid_epochs == 0:
current_dice = 0.
with torch.no_grad():
iplc_model.eval()
for it,(xt,xt_label,xt_name,lab_Imag) in tqdm(enumerate(valid_loader)):
xt = xt.to(device)
xt_label = xt_label.numpy().squeeze().astype(np.uint8)
output = iplc_model.test_with_name(xt)
output = output.squeeze(0)
output = torch.argmax(output,dim=1)
output_ = output.cpu().numpy()
xt = xt.detach().cpu().numpy().squeeze()
output = output_.squeeze()
one_case_dice = dice_eval(output,xt_label,num_classes) * 100
one_case_dice = np.array(one_case_dice)
one_case_dice = np.mean(one_case_dice,axis=0)
current_dice += one_case_dice
dice_mean = current_dice / (it + 1)
writer.add_scalar('dice', dice_mean, epoch)
if (current_dice / (it+1)) > best_dice:
best_dice = current_dice / (it+1)
model_dir = save_path + "/model/" + str(exp_name + '_' + target) + '/' + current_date
if not os.path.exists(model_dir):
os.makedirs(model_dir)
best_epoch = '{}/model-{}-{}-{}.pth'.format(model_dir, 'best', str(epoch), best_dice)
torch.save(iplc_model.state_dict(), best_epoch)
torch.save(iplc_model.state_dict(), '{}/model-{}.pth'.format(model_dir, 'latest'))
iplc_model.update_lr()
iplc_model.load_state_dict(torch.load(best_epoch,map_location='cpu'),strict=False)
iplc_model.eval()
test(config, iplc_model, valid_loader, test_loader, list_data, target, current_date, save_path)
return list_data
def mian():
# load config
save_path = "train_source"
current_date = time.strftime("%Y%m%d", time.localtime())
parser = argparse.ArgumentParser(description='config file')
parser.add_argument('--config', type=str, default="./config/train_source.cfg",
help='Path to the configuration file')
args = parser.parse_args()
config = args.config
config = parse_config(config)
list_data = []
print(config)
dataset = config['train']['dataset']
for dataset in ['mms']:
for target in ['B','C','D']:
config['train']['dataset'] = dataset
list_data.append(dataset)
list_data.append(target)
train_loader,valid_loader,test_loader = get_data_loader(config,dataset,target)
list_data = train(config, train_loader, valid_loader, test_loader, target, list_data, current_date, save_path)
directory_path = save_path + '/txt/' + str(target) + '/' + current_date
if not os.path.exists(directory_path):
os.makedirs(directory_path)
file_path = os.path.join(directory_path, f'{target}.txt')
with open(file_path, 'w') as file:
for line in list_data:
file.write(line + "\n")
if __name__ == '__main__':
set_random()
mian()