-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtest_solvers.py
314 lines (265 loc) · 13.4 KB
/
test_solvers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import unittest
from games import SecurityGame, NormalFormGame
from dobbs import Dobbs
from multipleLP import MultipleLP, Multiple_SingleLP
from eraser import Eraser
from origami import Origami
from origami_milp import OrigamiMILP
from hbgs import HBGS
class TestSolvers(unittest.TestCase):
@classmethod
def setUpClass(self):
"""
Create Games:
1) Set up a security game, generate corresponding norm_form
and harsanyi-transformed norm_form game.
2) Set up a large non-bayesian security game
3) Set up bayesian norm_form, generate corresponding harsanyi-
transformed norm_form game.
4) Set up norm_form game.
Solve Games:
"""
# construct games
# part 1
self.sec_game = SecurityGame(num_targets=5,
max_coverage=3,
num_attacker_types=1)
self.sec_norm_game = NormalFormGame(game=self.sec_game,
harsanyi=False)
self.sec_norm_hars_game = NormalFormGame(game=self.sec_norm_game)
# part 2
self.large_sec_game = SecurityGame(num_targets=100,
max_coverage=30,
num_attacker_types=1)
# part 3
self.bayse_sec_game = SecurityGame(num_targets=5,
max_coverage=3,
num_attacker_types=2)
self.bayse_sec_norm_game = NormalFormGame(game=self.bayse_sec_game,
harsanyi=False)
self.bayse_sec_norm_hars_game = NormalFormGame(
game=self.bayse_sec_norm_game)
# part 4
self.bayse_norm_game = NormalFormGame(num_defender_strategies=10,
num_attacker_strategies=3,
num_attacker_types=3)
self.bayse_norm_hars_game = NormalFormGame(game=self.bayse_norm_game)
self.bayse_norm_partial_full_game = NormalFormGame(
partial_game_from=self.bayse_norm_game,
attacker_types=(0,1,2))
self.bayse_norm_partial_game = NormalFormGame(
partial_game_from=self.bayse_norm_game,
attacker_types=(1,2))
# part 5
self.norm_game = NormalFormGame(num_defender_strategies=20,
num_attacker_strategies=10,
num_attacker_types=1)
# solve games:
# part 1 (non-bayesian security games)
print("solving part 1")
self.p1_eraser = Eraser(self.sec_game)
self.p1_origami = Origami(self.sec_game)
self.p1_origami_milp = OrigamiMILP(self.sec_game)
self.p1_dobbs = Dobbs(self.sec_norm_game)
self.p1_multLP = MultipleLP(self.sec_norm_hars_game)
self.p1_multSingLP_sec_game = Multiple_SingleLP(self.sec_game)
self.p1_multSingLP_sec_norm_game = Multiple_SingleLP(self.sec_norm_game)
self.p1_multSingLP_sec_norm_hars_game = Multiple_SingleLP(
self.sec_norm_hars_game)
self.p1_eraser.solve()
self.p1_origami.solve()
self.p1_origami_milp.solve()
self.p1_dobbs.solve()
self.p1_multLP.solve()
self.p1_multSingLP_sec_game.solve()
self.p1_multSingLP_sec_norm_game.solve()
self.p1_multSingLP_sec_norm_hars_game.solve()
# part 2 (large security game)
print("solving part 2")
self.p2_large_origami = Origami(self.large_sec_game)
self.p2_large_origami_milp = OrigamiMILP(self.large_sec_game)
self.p2_large_eraser = Eraser(self.large_sec_game)
self.p2_large_origami.solve()
self.p2_large_origami_milp.solve()
self.p2_large_eraser.solve()
# part 3 (bayseian security games)
print("solving part 3")
self.p3_dobbs = Dobbs(self.bayse_sec_norm_game)
self.p3_multLP = MultipleLP(self.bayse_sec_norm_hars_game)
self.p3_multSingLP = Multiple_SingleLP(self.bayse_sec_game)
self.p3_hbgs = HBGS(self.bayse_sec_game)
self.p3_hbgs_origami = HBGS(self.bayse_sec_game, True)
self.p3_hbgs_norm = HBGS(self.bayse_sec_norm_game)
self.p3_dobbs.solve()
self.p3_multLP.solve()
self.p3_multSingLP.solve()
self.p3_hbgs.solve()
self.p3_hbgs_origami.solve()
self.p3_hbgs_norm.solve()
# part 4 (bayesian norm_form game)
print("solving part 4")
self.p4_dobbs = Dobbs(self.bayse_norm_game)
self.p4_multLP = MultipleLP(self.bayse_norm_hars_game)
self.p4_multSingLP = Multiple_SingleLP(self.bayse_norm_game)
self.p4_dobbs_partial_full = Dobbs(self.bayse_norm_partial_full_game)
self.p4_multSingLP_partial_full = \
Multiple_SingleLP(self.bayse_norm_partial_full_game)
self.p4_dobbs_partial = Dobbs(self.bayse_norm_partial_game)
self.p4_multSingLP_partial = \
Multiple_SingleLP(self.bayse_norm_partial_game)
self.p4_hbgs = HBGS(self.bayse_norm_game)
self.p4_dobbs.solve()
self.p4_multLP.solve()
self.p4_multSingLP.solve()
self.p4_dobbs_partial.solve()
self.p4_dobbs_partial_full.solve()
self.p4_multSingLP_partial_full.solve()
self.p4_dobbs_partial.solve()
self.p4_multSingLP_partial.solve()
self.p4_hbgs.solve()
# part 5
print("solving part 5")
self.p5_dobbs = Dobbs(self.norm_game)
self.p5_multLP = MultipleLP(self.norm_game)
self.p5_multSingLP = Multiple_SingleLP(self.norm_game)
self.p5_dobbs.solve()
self.p5_multLP.solve()
self.p5_multSingLP.solve()
def test_p1(self):
"""
Test if opt_defender_payoff is the same across all solutions
"""
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_eraser.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_multLP.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_origami.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_origami_milp.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_multSingLP_sec_game.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_multSingLP_sec_norm_game.\
opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p1_dobbs.opt_defender_payoff,
self.p1_multSingLP_sec_norm_hars_game.\
opt_defender_payoff,
places=1)
def test_p2(self):
"""
Test if solvers taking compact representations of large games
are in agreement.
"""
# test that every opt_target is the same for all solvers
ori_target = self.p2_large_origami.opt_attacked_target
ori_milp_target = self.p2_large_origami_milp.opt_attacked_target
ers_target = self.p2_large_eraser.opt_attacked_target
print("ORIGAMI SOL: {}".format(self.p2_large_origami.solution_time))
print("ORIGAMI OH SOL: {}".format(self.p2_large_origami.solution_time_with_overhead))
print("ORI_MILP SOL: {}".format(self.p2_large_origami_milp.solution_time))
print("ORI_MILP OH SOL: {}".format(self.p2_large_origami_milp.solution_time_with_overhead
))
self.assertEqual(ori_target,
ori_milp_target,
msg="opt target disagree: origami vs. origami_milp")
self.assertEqual(ori_milp_target,
ers_target,
msg="opt target disagree: origami_milp vs. eraser")
# test that coverage is the same for attacked target
self.assertAlmostEqual(self.p2_large_origami.opt_coverage[ori_target],
self.p2_large_origami_milp.opt_coverage[ori_milp_target],
places=1,
msg="cov for attacked target disagree: origami vs. origami_milp")
self.assertAlmostEqual(self.p2_large_origami.opt_coverage[ori_target],
self.p2_large_eraser.opt_coverage[ers_target],
places=1,
msg="cov for attacked target disagree: origami vs. eraser")
# test that payoff is the same
self.assertAlmostEqual(self.p2_large_origami.opt_defender_payoff,
self.p2_large_origami_milp.opt_defender_payoff,
places=1,
msg="payoff disagreement: orig vs. orig-milp")
self.assertAlmostEqual(self.p2_large_origami.opt_defender_payoff,
self.p2_large_eraser.opt_defender_payoff,
places=1,
msg="payoff disagreement: ori vs. eraser")
# test that attackset are the same for origami and origami-milp
self.assertEqual(len(self.p2_large_origami.opt_attack_set),
len(self.p2_large_origami_milp.opt_attack_set),
msg="attackset diff. length: origami vs. origami-milp")
def test_p3(self):
"""
Test if opt_defender_payoff is the same across all solutions
"""
self.assertAlmostEqual(self.p3_dobbs.opt_defender_payoff,
self.p3_multLP.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p3_dobbs.opt_defender_payoff,
self.p3_multSingLP.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p3_hbgs.opt_defender_payoff,
self.p3_dobbs.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p3_hbgs_origami.opt_defender_payoff,
self.p3_dobbs.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p3_hbgs_norm.opt_defender_payoff,
self.p3_dobbs.opt_defender_payoff,
places=1)
def test_p4(self):
"""
Test if bayesian normal form game solvers are in agreement.
"""
# print("sol tim, dob, mltLP vs. Singl")
# print(self.p4_dobbs.solution_time)
# print(self.p4_multLP.solution_time)
# print(self.p4_multSingLP.solution_time)
# test that the expected opt defender payoff is the same
self.assertAlmostEqual(self.p4_dobbs.opt_defender_payoff,
self.p4_multLP.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p4_dobbs.opt_defender_payoff,
self.p4_multSingLP.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p4_dobbs_partial_full.opt_defender_payoff,
self.p4_multSingLP_partial_full.\
opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p4_dobbs_partial.opt_defender_payoff,
self.p4_multSingLP_partial.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p4_hbgs.opt_defender_payoff,
self.p4_dobbs.opt_defender_payoff,
places=1)
# test that opt defender strat. yields the same attacker pure strategy
self.assertSequenceEqual(self.p4_dobbs.opt_attacker_pure_strategy,
self.p4_multSingLP.opt_attacker_pure_strategy)
# self.assertSequenceEqual(self.p4_dobbs.opt_attacker_pure_strategy,
# self.bayse_norm_hars_game.\
# attacker_pure_strategy_tuples[self.p4_multLP.\
# opt_attacker_pure_strategy])
def test_p5(self):
"""
Test agreement between all solvers of non-bayesian normal form games.
"""
# test that the expected opt defender payoff is the same
self.assertAlmostEqual(self.p5_dobbs.opt_defender_payoff,
self.p5_multLP.opt_defender_payoff,
places=1)
self.assertAlmostEqual(self.p5_dobbs.opt_defender_payoff,
self.p5_multSingLP.opt_defender_payoff,
places=1)
# test that opt defender strat. yields the same attacker pure strategy
self.assertSequenceEqual(self.p5_dobbs.opt_attacker_pure_strategy,
self.p5_multSingLP.opt_attacker_pure_strategy)
self.assertEqual(self.p5_dobbs.opt_attacker_pure_strategy[0],
self.p5_multLP.opt_attacker_pure_strategy)
if __name__ == '__main__':
unittest.main()