forked from ppwwyyxx/cocoapi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCocoApi.lua
261 lines (232 loc) · 10.5 KB
/
CocoApi.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
--[[----------------------------------------------------------------------------
Interface for accessing the Common Objects in COntext (COCO) dataset.
For an overview of the API please see http://mscoco.org/dataset/#download.
CocoApi.lua (this file) is modeled after the Matlab CocoApi.m:
https://github.com/pdollar/coco/blob/master/MatlabAPI/CocoApi.m
The following API functions are defined in the Lua API:
CocoApi - Load COCO annotation file and prepare data structures.
getAnnIds - Get ann ids that satisfy given filter conditions.
getCatIds - Get cat ids that satisfy given filter conditions.
getImgIds - Get img ids that satisfy given filter conditions.
loadAnns - Load anns with the specified ids.
loadCats - Load cats with the specified ids.
loadImgs - Load imgs with the specified ids.
showAnns - Display the specified annotations.
Throughout the API "ann"=annotation, "cat"=category, and "img"=image.
For detailed usage information please see cocoDemo.lua.
LIMITATIONS: the following API functions are NOT defined in the Lua API:
loadRes - Load algorithm results and create API for accessing them.
download - Download COCO images from mscoco.org server.
In addition, currently the getCatIds() and getImgIds() do not accept filters.
getAnnIds() can be called using getAnnIds({imgId=id}) and getAnnIds({catId=id}).
Note: loading COCO JSON annotations to Lua tables is quite slow. Hence, a call
to CocApi(annFile) converts the annotations to a custom 'flattened' format that
is more efficient. The first time a COCO JSON is loaded, the conversion is
invoked (this may take up to a minute). The converted data is then stored in a
t7 file (the code must have write permission to the dir of the JSON file).
Future calls of cocoApi=CocApi(annFile) take a fraction of a second. To view the
created data just inspect cocoApi.data of a created instance of the CocoApi.
Common Objects in COntext (COCO) Toolbox. version 3.0
Data, paper, and tutorials available at: http://mscoco.org/
Code written by Pedro O. Pinheiro and Piotr Dollar, 2016.
Licensed under the Simplified BSD License [see coco/license.txt]
------------------------------------------------------------------------------]]
local json = require 'cjson'
local coco = require 'coco.env'
local TensorTable = torch.class('TensorTable',coco)
local CocoSeg = torch.class('CocoSeg',coco)
local CocoApi = torch.class('CocoApi',coco)
--------------------------------------------------------------------------------
--[[ TensorTable is a lightweight data structure for storing variable size 1D
tensors. Tables of tensors are slow to save/load to disk. Instead, TensorTable
stores all the data in a single long tensor (along with indices into the tensor)
making serialization fast. A TensorTable may only contain 1D same-type torch
tensors or strings. It supports only creation from a table and indexing. ]]
function TensorTable:__init( T )
local n = #T; assert(n>0)
local isStr = torch.type(T[1])=='string'
assert(isStr or torch.isTensor(T[1]))
local c=function(s) return torch.CharTensor(torch.CharStorage():string(s)) end
if isStr then local S=T; T={}; for i=1,n do T[i]=c(S[i]) end end
local ms, idx = torch.LongTensor(n), torch.LongTensor(n+1)
for i=1,n do ms[i]=T[i]:numel() end
idx[1]=1; idx:narrow(1,2,n):copy(ms); idx=idx:cumsum()
local type = string.sub(torch.type(T[1]),7,-1)
local data = torch[type](idx[n+1]-1)
if isStr then type='string' end
for i=1,n do if ms[i]>0 then data:sub(idx[i],idx[i+1]-1):copy(T[i]) end end
if ms:eq(ms[1]):all() and ms[1]>0 then data=data:view(n,ms[1]); idx=nil end
self.data, self.idx, self.type = data, idx, type
end
function TensorTable:__index__( i )
if torch.type(i)~='number' then return false end
local d, idx, type = self.data, self.idx, self.type
if idx and idx[i]==idx[i+1] then
if type=='string' then d='' else d=torch[type]() end
else
if idx then d=d:sub(idx[i],idx[i+1]-1) else d=d[i] end
if type=='string' then d=d:clone():storage():string() end
end
return d, true
end
--------------------------------------------------------------------------------
--[[ CocoSeg is an efficient data structure for storing COCO segmentations. ]]
function CocoSeg:__init( segs )
local polys, pIdx, sizes, rles, p, isStr = {}, {}, {}, {}, 0, 0
for i,seg in pairs(segs) do if seg.size then isStr=seg.counts break end end
isStr = torch.type(isStr)=='string'
for i,seg in pairs(segs) do
pIdx[i], sizes[i] = {}, {}
if seg.size then
sizes[i],rles[i] = seg.size,seg.counts
else
if isStr then rles[i]='' else rles[i]={} end
for j=1,#seg do p=p+1; pIdx[i][j],polys[p] = p,seg[j] end
end
pIdx[i],sizes[i] = torch.LongTensor(pIdx[i]),torch.IntTensor(sizes[i])
if not isStr then rles[i]=torch.IntTensor(rles[i]) end
end
for i=1,p do polys[i]=torch.DoubleTensor(polys[i]) end
self.polys, self.pIdx = coco.TensorTable(polys), coco.TensorTable(pIdx)
self.sizes, self.rles = coco.TensorTable(sizes), coco.TensorTable(rles)
end
function CocoSeg:__index__( i )
if torch.type(i)~='number' then return false end
if self.sizes[i]:numel()>0 then
return {size=self.sizes[i],counts=self.rles[i]}, true
else
local ids, polys = self.pIdx[i], {}
for i=1,ids:numel() do polys[i]=self.polys[ids[i]] end
return polys, true
end
end
--------------------------------------------------------------------------------
--[[ CocoApi is the API to the COCO dataset, see main comment for details. ]]
function CocoApi:__init( annFile )
assert( string.sub(annFile,-4,-1)=='json' and paths.filep(annFile) )
local torchFile = string.sub(annFile,1,-6) .. '.t7'
if not paths.filep(torchFile) then self:__convert(annFile,torchFile) end
local data = torch.load(torchFile)
self.data, self.inds = data, {}
for k,v in pairs({images='img',categories='cat',annotations='ann'}) do
local M = {}; self.inds[v..'IdsMap']=M
if data[k] then for i=1,data[k].id:size(1) do M[data[k].id[i]]=i end end
end
end
function CocoApi:__convert( annFile, torchFile )
print('convert: '..annFile..' --> .t7 [please be patient]')
local tic = torch.tic()
-- load data and decode json
local data = torch.CharStorage(annFile):string()
data = json.decode(data); collectgarbage()
-- transpose and flatten each field in the coco data struct
local convert = {images=true, categories=true, annotations=true}
for field, d in pairs(data) do if convert[field] then
print('converting: '..field)
local n, out = #d, {}
if n==0 then d,n={d},1 end
for k,v in pairs(d[1]) do
local t, isReg = torch.type(v), true
for i=1,n do isReg=isReg and torch.type(d[i][k])==t end
if t=='number' and isReg then
out[k] = torch.DoubleTensor(n)
for i=1,n do out[k][i]=d[i][k] end
elseif t=='string' and isReg then
out[k]={}; for i=1,n do out[k][i]=d[i][k] end
out[k] = coco.TensorTable(out[k])
elseif t=='table' and isReg and torch.type(v[1])=='number' then
out[k]={}; for i=1,n do out[k][i]=torch.DoubleTensor(d[i][k]) end
out[k] = coco.TensorTable(out[k])
if not out[k].idx then out[k]=out[k].data end
else
out[k]={}; for i=1,n do out[k][i]=d[i][k] end
if k=='segmentation' then out[k] = coco.CocoSeg(out[k]) end
end
collectgarbage()
end
if out.id then out.idx=torch.range(1,out.id:size(1)) end
data[field] = out
collectgarbage()
end end
-- create mapping from cat/img index to anns indices for that cat/img
print('convert: building indices')
local makeMap = function( type, type_id )
if not data[type] or not data.annotations then return nil end
local invmap, n = {}, data[type].id:size(1)
for i=1,n do invmap[data[type].id[i]]=i end
local map = {}; for i=1,n do map[i]={} end
data.annotations[type_id..'x'] = data.annotations[type_id]:clone()
for i=1,data.annotations.id:size(1) do
local id = invmap[data.annotations[type_id][i]]
data.annotations[type_id..'x'][i] = id
table.insert(map[id],data.annotations.id[i])
end
for i=1,n do map[i]=torch.LongTensor(map[i]) end
return coco.TensorTable(map)
end
data.annIdsPerImg = makeMap('images','image_id')
data.annIdsPerCat = makeMap('categories','category_id')
-- save to disk
torch.save( torchFile, data )
print(('convert: complete [%.2f s]'):format(torch.toc(tic)))
end
function CocoApi:getAnnIds( filters )
if not filters then filters = {} end
if filters.imgId then
return self.data.annIdsPerImg[self.inds.imgIdsMap[filters.imgId]] or {}
elseif filters.catId then
return self.data.annIdsPerCat[self.inds.catIdsMap[filters.catId]] or {}
else
return self.data.annotations.id
end
end
function CocoApi:getCatIds()
return self.data.categories.id
end
function CocoApi:getImgIds()
return self.data.images.id
end
function CocoApi:loadAnns( ids )
return self:__load(self.data.annotations,self.inds.annIdsMap,ids)
end
function CocoApi:loadCats( ids )
return self:__load(self.data.categories,self.inds.catIdsMap,ids)
end
function CocoApi:loadImgs( ids )
return self:__load(self.data.images,self.inds.imgIdsMap,ids)
end
function CocoApi:showAnns( img, anns )
local n, h, w = #anns, img:size(2), img:size(3)
local MaskApi, clrs = coco.MaskApi, torch.rand(n,3)*.6+.4
local O = img:clone():contiguous():float()
if n==0 then anns,n={anns},1 end
if anns[1].keypoints then for i=1,n do if anns[i].iscrowd==0 then
local sk, kp, j, k = self:loadCats(anns[i].category_id)[1].skeleton
kp=anns[i].keypoints; k=kp:size(1); j=torch.range(1,k,3):long(); k=k/3;
local x,y,v = kp:index(1,j), kp:index(1,j+1), kp:index(1,j+2)
for _,s in pairs(sk) do if v[s[1]]>0 and v[s[2]]>0 then
MaskApi.drawLine(O,x[s[1]],y[s[1]],x[s[2]],y[s[2]],.75,clrs[i])
end end
for j=1,k do if v[j]==1 then MaskApi.drawCirc(O,x[j],y[j],4,{0,0,0}) end end
for j=1,k do if v[j]>0 then MaskApi.drawCirc(O,x[j],y[j],3,clrs[i]) end end
end end end
if anns[1].segmentation or anns[1].bbox then
local Rs, alpha = {}, anns[1].keypoints and .25 or .4
for i=1,n do
Rs[i]=anns[i].segmentation
if Rs[i] and #Rs[i]>0 then Rs[i]=MaskApi.frPoly(Rs[i],h,w) end
if not Rs[i] then Rs[i]=MaskApi.frBbox(anns[i].bbox,h,w)[1] end
end
MaskApi.drawMasks(O,MaskApi.decode(Rs),nil,alpha,clrs)
end
return O
end
function CocoApi:__load( data, map, ids )
if not torch.isTensor(ids) then ids=torch.LongTensor({ids}) end
local out, idx = {}, nil
for i=1,ids:numel() do
out[i], idx = {}, map[ids[i]]
for k,v in pairs(data) do out[i][k]=v[idx] end
end
return out
end