forked from aoapc-book/aoapc-bac2nd
-
Notifications
You must be signed in to change notification settings - Fork 1
/
UVa1601.cpp
95 lines (82 loc) · 2.86 KB
/
UVa1601.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
// UVa1601 The Morning after Halloween
// Rujia Liu
// This code implements the simpliest yet efficient-enough algorithm I'm aware of
// Readers are encouraged to experiment on other algorithms (especially for better efficiency!)
#include<cstdio>
#include<cstring>
#include<cctype>
#include<queue>
using namespace std;
const int maxs = 20;
const int maxn = 150; // 75% cells plus 2 fake nodes
const int dx[]={1,-1,0,0,0}; // 4 moves, plus "no move"
const int dy[]={0,0,1,-1,0};
inline int ID(int a, int b, int c) {
return (a<<16)|(b<<8)|c;
}
int s[3], t[3]; // starting/ending position of each ghost
int deg[maxn], G[maxn][5]; // target cells for each move (including "no move")
inline bool conflict(int a, int b, int a2, int b2) {
return a2 == b2 || (a2 == b && b2 == a);
}
int d[maxn][maxn][maxn]; // distance from starting state
int bfs() {
queue<int> q;
memset(d, -1, sizeof(d));
q.push(ID(s[0], s[1], s[2])); // starting node
d[s[0]][s[1]][s[2]] = 0;
while(!q.empty()) {
int u = q.front(); q.pop();
int a = (u>>16)&0xff, b = (u>>8)&0xff, c = u&0xff;
if(a == t[0] && b == t[1] && c == t[2]) return d[a][b][c]; // solution found
for(int i = 0; i < deg[a]; i++) {
int a2 = G[a][i];
for(int j = 0; j < deg[b]; j++) {
int b2 = G[b][j];
if(conflict(a, b, a2, b2)) continue;
for(int k = 0; k < deg[c]; k++) {
int c2 = G[c][k];
if(conflict(a, c, a2, c2)) continue;
if(conflict(b, c, b2, c2)) continue;
if(d[a2][b2][c2] != -1) continue;
d[a2][b2][c2] = d[a][b][c]+1;
q.push(ID(a2, b2, c2));
}
}
}
}
return -1;
}
int main() {
int w, h, n;
while(scanf("%d%d%d\n", &w, &h, &n) == 3 && n) {
char maze[20][20];
for(int i = 0; i < h; i++)
fgets(maze[i], 20, stdin);
// extract empty cells
int cnt, x[maxn], y[maxn], id[maxs][maxs]; // cnt is the number of empty cells
cnt = 0;
for(int i = 0; i < h; i++)
for(int j = 0; j < w; j++)
if(maze[i][j] != '#') {
x[cnt] = i; y[cnt] = j; id[i][j] = cnt;
if(islower(maze[i][j])) s[maze[i][j] - 'a'] = cnt;
else if(isupper(maze[i][j])) t[maze[i][j] - 'A'] = cnt;
cnt++;
}
// build a graph of empty cells
for(int i = 0; i < cnt; i++) {
deg[i] = 0;
for(int dir = 0; dir < 5; dir++) {
int nx = x[i]+dx[dir], ny = y[i]+dy[dir];
// "Outermost cells of a map are walls" means we don't need to check out-of-bound
if(maze[nx][ny] != '#') G[i][deg[i]++] = id[nx][ny];
}
}
// add fakes nodes so that in each case we have 3 ghosts. this makes the code shorter
if(n <= 2) { deg[cnt] = 1; G[cnt][0] = cnt; s[2] = t[2] = cnt++; }
if(n <= 1) { deg[cnt] = 1; G[cnt][0] = cnt; s[1] = t[1] = cnt++; }
printf("%d\n", bfs());
}
return 0;
}