This repository was archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathensemble_accuracy_calculator.py
548 lines (403 loc) · 21 KB
/
ensemble_accuracy_calculator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# part of the code blocks are modified from:
# https://github.com/litian96/FedProx/blob/master/flearn/models/shakespeare/stacked_lstm.py
# by Hongyi Wang (hwang595 @ GitHub)
# credit goes to: Tian Li (litian96 @ GitHub)
import json
import logging
import numpy as np
import time
import math
import pickle
import copy
from itertools import product
from sklearn.metrics import confusion_matrix
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from language_utils import *
from language_frb import layerwise_fedma
from language_frb import patch_weights
import language_model
#from combine_nets import prepare_uniform_weights, prepare_sanity_weights, prepare_weight_matrix, normalize_weights, get_weighted_average_pred
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
BATCH_SIZE = 50
TRAIN_DATA_DIR = "./datum/leaf/data/shakespeare/data/train/"
TEST_DATA_DIR = "./datum/leaf/data/shakespeare/data/test/"
TRAIN_DATA_NAME = "all_data_niid_0_keep_10000_train_9.json"
TEST_DATA_NAME = "all_data_niid_0_keep_10000_test_9.json"
#TRIAL_USER_NAME = ["THE_FIRST_PART_OF_KING_HENRY_THE_FOURTH_HOT", "KING_RICHARD_THE_SECOND_KING_RICHARD"]
TRIAL_EPOCH=10
# since we used a relatively "fixed" model for shakespeare dataset
# we thus hardcode it here
NUM_LAYERS=3 # we start from 1-layer LSTM now (so the 3 layers now is encoder|hidden LSTM|decoder)
#NUM_LAYERS=4 # 2-layer LSTM (4 layers: encoder|hidden LSTM1|hidden LSTM2|decoder)
def prepare_weight_matrix(n_classes, weights: dict):
weights_list = {}
for net_i, cls_cnts in weights.items():
cls = np.array(list(cls_cnts.keys()))
cnts = np.array(list(cls_cnts.values()))
weights_list[net_i] = np.array([0] * n_classes, dtype=np.float32)
weights_list[net_i][cls] = cnts
weights_list[net_i] = torch.from_numpy(weights_list[net_i]).view(1, -1)
return weights_list
def prepare_uniform_weights(n_classes, net_cnt, fill_val=1):
weights_list = {}
for net_i in range(net_cnt):
temp = np.array([fill_val] * n_classes, dtype=np.float32)
weights_list[net_i] = torch.from_numpy(temp).view(1, -1)
return weights_list
def prepare_sanity_weights(n_classes, net_cnt):
return prepare_uniform_weights(n_classes, net_cnt, fill_val=0)
def normalize_weights(weights):
Z = np.array([])
eps = 1e-6
weights_norm = {}
for _, weight in weights.items():
if len(Z) == 0:
Z = weight.data.numpy()
else:
Z = Z + weight.data.numpy()
for mi, weight in weights.items():
weights_norm[mi] = weight / torch.from_numpy(Z + eps)
return weights_norm
def get_weighted_average_pred(models: list, weights: dict, x, hidden_list, device="cpu"):
out_weighted = None
# Compute the predictions
for model_i, model in enumerate(models):
#logger.info("Model: {}".format(next(model.parameters()).device))
#logger.info("data device: {}".format(x.device))
hidden_test = hidden_list[model_i]
hidden_test = repackage_hidden(hidden_test)
#logger.info("x device: {}, hidden_test device: {}".format(x.device, hidden_test[0].device))
output, hidden_test = model(x, hidden_test)
hidden_list[model_i] = hidden_test
out = F.softmax(output.t(), dim=-1) # (N, C)
weight = weights[model_i].to(device)
if out_weighted is None:
weight = weight.to(device)
out_weighted = (out * weight)
else:
out_weighted += (out * weight)
return out_weighted.t(), hidden_list
def pdm_prepare_weights(nets):
weights = []
for net_i, net in enumerate(nets):
layer_i = 0
statedict = net.state_dict()
net_weights = []
while True:
if ('layers.%d.weight' % layer_i) not in statedict.keys():
break
layer_weight = statedict['layers.%d.weight' % layer_i].numpy().T
layer_bias = statedict['layers.%d.bias' % layer_i].numpy()
net_weights.extend([layer_weight, layer_bias])
layer_i += 1
weights.append(net_weights)
return weights
def pdm_prepare_weights_cnn(nets):
"""
Note that we only handle the FC parts and leave the conv layers as is
"""
weights = []
for net_i, net in enumerate(nets):
layer_i = 0
statedict = net.state_dict()
net_weights = [np.zeros(statedict['fc1.weight'].numpy().T.shape[0]), # add a dummy layer
statedict['fc1.weight'].numpy().T,
statedict['fc1.bias'].numpy(),
statedict['fc2.weight'].numpy().T,
statedict['fc2.bias'].numpy(),
statedict['fc3.weight'].numpy().T,
statedict['fc3.bias'].numpy()]
weights.append(net_weights)
return weights
def pdm_prepare_freq(cls_freqs, n_classes):
freqs = []
for net_i in sorted(cls_freqs.keys()):
net_freqs = [0] * n_classes
for cls_i in cls_freqs[net_i]:
net_freqs[cls_i] = cls_freqs[net_i][cls_i]
freqs.append(np.array(net_freqs))
return freqs
def compute_pdm_net_accuracy(weights, train_dl, test_dl, n_classes):
dims = []
dims.append(weights[0].shape[0])
for i in range(0, len(weights), 2):
dims.append(weights[i].shape[1])
ip_dim = dims[0]
op_dim = dims[-1]
hidden_dims = dims[1:-1]
logger.info("IP dim of matched NN: {}. OP dim of matched NN: {}, Hidden Dims of Matched NN: {}".format(ip_dim, op_dim, hidden_dims))
logger.info("*"*30)
pdm_net = FcNet(ip_dim, hidden_dims, op_dim)
statedict = pdm_net.state_dict()
i = 0
layer_i = 0
while i < len(weights):
weight = weights[i]
i += 1
bias = weights[i]
i += 1
statedict['layers.%d.weight' % layer_i] = torch.from_numpy(weight.T)
statedict['layers.%d.bias' % layer_i] = torch.from_numpy(bias)
layer_i += 1
pdm_net.load_state_dict(statedict)
train_acc, conf_matrix_train = compute_ensemble_accuracy([pdm_net], train_dl, n_classes, uniform_weights=True)
test_acc, conf_matrix_test = compute_ensemble_accuracy([pdm_net], test_dl, n_classes, uniform_weights=True)
return train_acc, test_acc, conf_matrix_train, conf_matrix_test
def compute_pdm_cnn_accuracy(models, weights, train_dl, test_dl, n_classes):
"""Note that we only handle the FC weights for now"""
# we need to figure out the FC dims first
matched_weights = weights[1:] # get rid of the dummy layer, this should be deprecated later
input_dim = matched_weights[0].shape[0] # hard coded for now, will make changes later
hidden_dims = [matched_weights[0].shape[1], matched_weights[2].shape[1]]
output_dim = matched_weights[-1].shape[0]
logger.info("Input dim: {}, hidden_dims: {}, output_dim: {}".format(input_dim, hidden_dims, output_dim))
#book_keeper = {4:0, 5:1, 6:2, 7:3, 8:4, 9:5}
unmatched_cnn_blocks = []
for model_i, model in enumerate(models):
tempt_cnn = ConvBlock()
new_state_dict = {}
model_counter = 0
# handle the conv layers part which is not changing
for param_idx, (key_name, param) in enumerate(tempt_cnn.state_dict().items()):
if "conv" in key_name:
temp_dict = {key_name: models[model_i].state_dict()[key_name]}
new_state_dict.update(temp_dict)
model_counter += 1
#for (k, v) in new_state_dict.items():
# print("New state dict key: {}, val: {}".format(k, v))
tempt_cnn.load_state_dict(new_state_dict)
unmatched_cnn_blocks.append(tempt_cnn)
matched_state_dict = {}
matched_fcs = FCBlock(input_dim, hidden_dims, output_dim)
for param_idx, (key_name, param) in enumerate(matched_fcs.state_dict().items()):
if "weight" in key_name:
temp_dict = {key_name: torch.from_numpy(matched_weights[param_idx].T)}
elif "bias" in key_name:
temp_dict = {key_name: torch.from_numpy(matched_weights[param_idx])}
new_state_dict.update(temp_dict)
matched_fcs.load_state_dict(new_state_dict)
logger.info("Cnn info:")
for (k, v) in unmatched_cnn_blocks[0].items():
logger.info("Cnn blocks keys: {}, values: {}".format(k, v))
logger.info("fc info:")
for (k, v) in matched_fcs.items():
logger.info("FC blocks keys: {}, values: {}".format(k, v))
def compute_pdm_matching_multilayer(models, train_dl, test_dl, cls_freqs, n_classes, sigma0=None, it=0, sigma=None, gamma=None):
#batch_weights = pdm_prepare_weights(models)
batch_weights = pdm_prepare_weights_cnn(models)
# gather the weights and biases of each layers of the FC_NN
for i, weights in enumerate(batch_weights):
for w in weights:
logger.info(w.shape)
logger.info("*"*20)
logger.info("Batch index: {}".format(i)+"="*30)
batch_freqs = pdm_prepare_freq(cls_freqs, n_classes)
res = {}
best_test_acc, best_train_acc, best_weights, best_sigma, best_gamma, best_sigma0 = -1, -1, None, -1, -1, -1
#gammas = [1.0, 1e-3, 50.0] if gamma is None else [gamma]
#sigmas = [1.0, 0.1, 0.5] if sigma is None else [sigma]
#sigma0s = [1.0, 10.0] if sigma0 is None else [sigma0]
gammas = [30.0]
sigmas = [1.0]
sigma0s = [1.0]
for gamma, sigma, sigma0 in product(gammas, sigmas, sigma0s):
logger.info("Gamma: ", gamma, "Sigma: ", sigma, "Sigma0: ", sigma0)
hungarian_weights = pdm_multilayer_group_descent(
batch_weights, sigma0_layers=sigma0, sigma_layers=sigma, batch_frequencies=batch_freqs, it=it, gamma_layers=gamma
)
for i, w in enumerate(hungarian_weights):
logger.info("Hungarian weight index: {}, Hungarian weight shape: {}".format(i, w.shape))
#exit()
#train_acc, test_acc, _, _ = compute_pdm_net_accuracy(hungarian_weights, train_dl, test_dl, n_classes)
train_acc, test_acc, _, _ = compute_pdm_cnn_accuracy(models, hungarian_weights, train_dl, test_dl, n_classes)
exit()
key = (sigma0, sigma, gamma)
res[key] = {}
res[key]['shapes'] = list(map(lambda x: x.shape, hungarian_weights))
res[key]['train_accuracy'] = train_acc
res[key]['test_accuracy'] = test_acc
logger.info('Sigma0: %s. Sigma: %s. Shapes: %s, Accuracy: %f' % (
str(sigma0), str(sigma), str(res[key]['shapes']), test_acc))
if train_acc > best_train_acc:
best_test_acc = test_acc
best_train_acc = train_acc
best_weights = hungarian_weights
best_sigma = sigma
best_gamma = gamma
best_sigma0 = sigma0
logger.info('Best sigma0: %f, Best sigma: %f, Best Gamma: %f, Best accuracy (Test): %f. Training acc: %f' % (
best_sigma0, best_sigma, best_gamma, best_test_acc, best_train_acc))
return (best_sigma0, best_sigma, best_gamma, best_test_acc, best_train_acc, best_weights, res)
def compute_iterative_pdm_matching(models, train_dl, test_dl, cls_freqs, n_classes, sigma, sigma0, gamma, it, old_assignment=None):
batch_weights = pdm_prepare_weights(models)
batch_freqs = pdm_prepare_freq(cls_freqs, n_classes)
hungarian_weights, assignments = pdm_iterative_layer_group_descent(
batch_weights, batch_freqs, sigma_layers=sigma, sigma0_layers=sigma0, gamma_layers=gamma, it=it, assignments_old=old_assignment
)
train_acc, test_acc, conf_matrix_train, conf_matrix_test = compute_pdm_net_accuracy(hungarian_weights, train_dl, test_dl, n_classes)
batch_weights_new = [pdm_build_init(hungarian_weights, assignments, j) for j in range(len(models))]
matched_net_shapes = list(map(lambda x: x.shape, hungarian_weights))
return batch_weights_new, train_acc, test_acc, matched_net_shapes, assignments, hungarian_weights, conf_matrix_train, conf_matrix_test
def flatten_weights(weights_j):
flat_weights = np.hstack((weights_j[0].T, weights_j[1].reshape(-1,1), weights_j[2]))
return flat_weights
def build_network(clusters, batch_weights, D):
cluster_network = [clusters[:,:D].T, clusters[:,D].T, clusters[:,(D+1):]]
bias = np.mean(batch_weights, axis=0)[-1]
cluster_network += [bias]
return cluster_network
def compute_ensemble_accuracy(models: list, global_test_data, global_test_label, n_classes,
global_num_samples_test, device="cpu"):
correct, total = 0, 0
true_labels_list, pred_labels_list = np.array([]), np.array([])
global_eval_batch_size = 10
was_training = [False]*len(models)
for i, model in enumerate(models):
if model.training:
was_training[i] = True
model.eval()
hidden_list = []
for m in models:
hidden_test = m.init_hidden(global_eval_batch_size)
hidden_list.append(hidden_test)
weights_list = prepare_uniform_weights(n_classes, len(models))
weights_norm = normalize_weights(weights_list)
with torch.no_grad():
for i in range(int(global_num_samples_test / global_eval_batch_size)):
input_data, target_data = process_x(global_test_data[global_eval_batch_size*i:global_eval_batch_size*(i+1)]), process_y(global_test_label[global_eval_batch_size*i:global_eval_batch_size*(i+1)])
data, targets = torch.from_numpy(input_data).to(device), torch.from_numpy(target_data).to(device)
out, hidden_list = get_weighted_average_pred(models, weights_norm, data, hidden_list=hidden_list, device=device)
#_, pred_label = torch.max(out, 1)
_, pred_label = torch.max(out.t(), 1)
correct += (pred_label == torch.max(targets, 1)[1]).sum().item()
logger.info("Correct: {}, data? :{}, batch index: {}/{}".format(correct, data.data.size()[0], i, int(global_num_samples_test / global_eval_batch_size)))
logger.info('*' * 89)
logger.info("Ensemble result: Correct: {}, Total: {}, Accs: {}".format(correct, global_num_samples_test, correct / float(global_num_samples_test)))
logger.info('*' * 89)
return correct / float(global_num_samples_test)
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if args.model == 'Transformer':
output = model(data)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
def collect_weights(models):
logger.info("Collecting weights ...")
collected_weights = []
for model_index, model in enumerate(models):
param_vals = []
for param_index, (name, param) in enumerate(model.named_parameters()):
logger.info("Layer index: {}, Layer name: {}, Layer shape: {}".format(param_index, name, param.size()))
param_vals.append(param.cpu().detach().numpy())
collected_weights.append(param_vals)
return collected_weights
if __name__ == "__main__":
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info("Experiment running on device: {}".format(device))
with open(TRAIN_DATA_DIR+TRAIN_DATA_NAME) as json_file:
train_data = json.load(json_file)
with open(TEST_DATA_DIR+TEST_DATA_NAME) as json_file:
test_data = json.load(json_file)
lr = 0.8
clip = 0.25
n_clients = 66
retrain_flag = False
TRIAL_USER_NAME = train_data["users"][0:n_clients] #this can be of length in range from 1 to 132
start_time = time.time()
total_loss = 0.0
nets_list = []
criterion = nn.CrossEntropyLoss()
for client_index in range(n_clients):
if retrain_flag:
logger.info("Start local training process for client {} ....".format(client_index))
client_user_name = TRIAL_USER_NAME[client_index]
num_samples_train = len(train_data["user_data"][client_user_name]['x'])
num_samples_test = len(test_data["user_data"][client_user_name]['x'])
user_train_data = train_data["user_data"][client_user_name]
user_test_data = test_data["user_data"][client_user_name]
model = language_model.RNNModel('LSTM', 80, 8, 256, 1, 0.2, tie_weights=False).to(device)
#optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0.0001, amsgrad=True)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=0.0001)
for epoch in range(TRIAL_EPOCH):
model.train()
epoch_start_time = time.time()
hidden_train = model.init_hidden(BATCH_SIZE)
for i in range(int(num_samples_train / BATCH_SIZE)):
input_data, target_data = process_x(user_train_data['x'][BATCH_SIZE*i:BATCH_SIZE*(i+1)]), process_y(user_train_data['y'][BATCH_SIZE*i:BATCH_SIZE*(i+1)])
data, targets = torch.from_numpy(input_data).to(device), torch.from_numpy(target_data).to(device)
optimizer.zero_grad()
hidden_train = repackage_hidden(hidden_train)
output, hidden_train = model(data, hidden_train)
loss = criterion(output.t(), torch.max(targets, 1)[1])
loss.backward()
optimizer.step()
total_loss += loss.item()
cur_loss = total_loss
elapsed = time.time() - start_time
#logger.info('| epoch {:3d} | {:5d}/{:5d} batches | lr {:02.2f} | ms/batch {:5.2f} | '
# 'loss {:5.2f} | ppl {:8.2f}'.format(
# epoch, i, num_samples_train // BATCH_SIZE, lr,
# elapsed * 1000, cur_loss, math.exp(cur_loss)))
total_loss = 0
start_time = time.time()
eval_batch_size = 10
model.eval()
total_val_loss = 0.
ntokens = 80
hidden_test = model.init_hidden(eval_batch_size)
correct_prediction = 0
with torch.no_grad():
for i in range(int(num_samples_test / eval_batch_size)):
input_data, target_data = process_x(user_test_data['x'][eval_batch_size*i:eval_batch_size*(i+1)]), process_y(user_test_data['y'][eval_batch_size*i:eval_batch_size*(i+1)])
data, targets = torch.from_numpy(input_data).to(device), torch.from_numpy(target_data).to(device)
hidden_test = repackage_hidden(hidden_test)
output, hidden_test = model(data, hidden_test)
loss = criterion(output.t(), torch.max(targets, 1)[1])
_, pred_label = torch.max(output.t(), 1)
correct_prediction += (pred_label == torch.max(targets, 1)[1]).sum().item()
total_val_loss += loss.item()
logger.info('-' * 89)
logger.info('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | pred: {}/{} | acc: {:.4f}%'.format(epoch, (time.time() - epoch_start_time),
total_val_loss, correct_prediction, num_samples_test, correct_prediction/num_samples_test*100.0))
logger.info('-' * 89)
nets_list.append(model)
# we save the trained model here:
with open("trained_model_client_{}".format(client_index), 'wb') as trained_model_file:
pickle.dump(model, trained_model_file)
else:
# load the trained model from local disk, and forward
with open("trained_model_client_{}".format(client_index), 'rb') as trained_model_file:
model = pickle.load(trained_model_file)
nets_list.append(model)
# we will need to construct a new global test set based on all test data on each of the clients
global_test_data = []
global_test_label = []
global_num_samples_test = 0
global_num_samples_train = 0
for client_index in range(n_clients):
client_user_name = TRIAL_USER_NAME[client_index]
global_num_samples_test += len(test_data["user_data"][client_user_name]['x'])
global_num_samples_train += len(train_data["user_data"][client_user_name]['x'])
global_test_data += test_data["user_data"][client_user_name]['x']
global_test_label += test_data["user_data"][client_user_name]['y']
logger.info("Total number of training data points: {}".format(global_num_samples_train))
logger.info("Total number of test data points: {}".format(global_num_samples_test))
global_eval_batch_size = 10
compute_ensemble_accuracy(models=nets_list, global_test_data=global_test_data, global_test_label=global_test_label, n_classes=80, global_num_samples_test=global_num_samples_test,
device=device)