This repository was archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathlanguage_whole_training.py
160 lines (119 loc) · 5.99 KB
/
language_whole_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# part of the code blocks are modified from: https://github.com/litian96/FedProx/blob/master/flearn/models/shakespeare/stacked_lstm.py
# credit goes to: Tian Li (litian96 @ GitHub)
import json
import logging
import numpy as np
import time
import math
import pickle
import copy
import torch
import torch.nn as nn
import torch.optim as optim
from language_utils import *
import language_model
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
BATCH_SIZE = 50
TRAIN_DATA_DIR = "./datum/leaf/data/shakespeare/data/train/"
TEST_DATA_DIR = "./datum/leaf/data/shakespeare/data/test/"
TRAIN_DATA_NAME = "all_data_niid_0_keep_10000_train_9.json"
TEST_DATA_NAME = "all_data_niid_0_keep_10000_test_9.json"
TRIAL_EPOCH=30
# since we used a relatively "fixed" model for shakespeare dataset
# we thus hardcode it here
#NUM_LAYERS=3 # we start from 1-layer LSTM now (so the 3 layers now is encoder|hidden LSTM|decoder)
NUM_LAYERS=4 # 2-layer LSTM (4 layers: encoder|hidden LSTM1|hidden LSTM2|decoder)
def evaluate(data_source):
# Turn on evaluation mode which disables dropout.
model.eval()
total_loss = 0.
ntokens = len(corpus.dictionary)
hidden = model.init_hidden(eval_batch_size)
with torch.no_grad():
for i in range(0, data_source.size(0) - 1, args.bptt):
data, targets = get_batch(data_source, i)
if args.model == 'Transformer':
output = model(data)
else:
output, hidden = model(data, hidden)
hidden = repackage_hidden(hidden)
output_flat = output.view(-1, ntokens)
total_loss += len(data) * criterion(output_flat, targets).item()
return total_loss / (len(data_source) - 1)
if __name__ == "__main__":
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info("Experiment running on device: {}".format(device))
with open(TRAIN_DATA_DIR+TRAIN_DATA_NAME) as json_file:
train_data = json.load(json_file)
with open(TEST_DATA_DIR+TEST_DATA_NAME) as json_file:
test_data = json.load(json_file)
lr = 0.25
clip = 0.25
n_clients = 66
retrain_flag = True
TRIAL_USER_NAME = train_data["users"][0:n_clients] #this can be of length in range from 1 to 132
start_time = time.time()
total_loss = 0.0
num_samples_list = [len(train_data["user_data"][TRIAL_USER_NAME[client_index]]['x']) for client_index in range(n_clients)]
nets_list = []
criterion = nn.CrossEntropyLoss()
# we will need to construct a new global test set based on all test data on each of the clients
global_test_data = []
global_test_label = []
global_num_samples_test = 0
global_train_data = []
global_train_label = []
global_num_samples_train = 0
for client_index in range(n_clients):
client_user_name = TRIAL_USER_NAME[client_index]
global_num_samples_test += len(test_data["user_data"][client_user_name]['x'])
global_test_data += test_data["user_data"][client_user_name]['x']
global_test_label += test_data["user_data"][client_user_name]['y']
global_num_samples_train += len(train_data["user_data"][client_user_name]['x'])
global_train_data += train_data["user_data"][client_user_name]['x']
global_train_label += train_data["user_data"][client_user_name]['y']
global_eval_batch_size = 10
logger.info("Start training over the entire dataset ....")
model = language_model.RNNModel('LSTM', 80, 8, 256, 1, 0.2, tie_weights=False).to(device)
#optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0.0001, amsgrad=True)
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=0.0001)
for epoch in range(TRIAL_EPOCH):
model.train()
epoch_start_time = time.time()
hidden_train = model.init_hidden(BATCH_SIZE)
for i in range(int(global_num_samples_train / BATCH_SIZE)):
input_data, target_data = process_x(global_train_data[BATCH_SIZE*i:BATCH_SIZE*(i+1)]), process_y(global_train_label[BATCH_SIZE*i:BATCH_SIZE*(i+1)])
data, targets = torch.from_numpy(input_data).to(device), torch.from_numpy(target_data).to(device)
optimizer.zero_grad()
hidden_train = repackage_hidden(hidden_train)
output, hidden_train = model(data, hidden_train)
loss = criterion(output.t(), torch.max(targets, 1)[1])
loss.backward()
optimizer.step()
total_loss += loss.item()
cur_loss = total_loss
elapsed = time.time() - start_time
total_loss = 0
start_time = time.time()
global_eval_batch_size = 10
model.eval()
total_val_loss = 0.
ntokens = 80
hidden_test = model.init_hidden(global_eval_batch_size)
correct_prediction = 0
with torch.no_grad():
for i in range(int(global_num_samples_test / global_eval_batch_size)):
input_data, target_data = process_x(global_test_data[global_eval_batch_size*i:global_eval_batch_size*(i+1)]), process_y(global_test_label[global_eval_batch_size*i:global_eval_batch_size*(i+1)])
data, targets = torch.from_numpy(input_data).to(device), torch.from_numpy(target_data).to(device)
hidden_test = repackage_hidden(hidden_test)
output, hidden_test = model(data, hidden_test)
loss = criterion(output.t(), torch.max(targets, 1)[1])
_, pred_label = torch.max(output.t(), 1)
correct_prediction += (pred_label == torch.max(targets, 1)[1]).sum().item()
total_val_loss += loss.item()
logger.info('-' * 89)
logger.info('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | pred: {}/{} | acc: {:.4f}%'.format(epoch, (time.time() - epoch_start_time),
total_val_loss, correct_prediction, global_num_samples_test, correct_prediction/global_num_samples_test*100.0))
logger.info('-' * 89)