This repository was archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 83
/
Copy pathpfnm.py
2040 lines (1643 loc) · 119 KB
/
pfnm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from .utils import *
import copy
#from joblib import Parallel, delayed
from .gaus_marginal_matching import match_local_atoms
import torch
# atoms_j_cuda = torch.from_numpy(atoms_j).to('cuda:0')
# global_atoms_cuda = torch.from_numpy(global_atoms).to('cuda:0')
# denum_match_cuda = torch.from_numpy(denum_match).to('cuda:0')
# sigma_ratio_cuda = torch.from_numpy(sigma_ratio).to('cuda:0')
# mu0_cuda = torch.from_numpy(mu0).to('cuda:0')
def row_param_cost(global_weights, weights_j_l, global_sigmas, sigma_inv_j):
match_norms = ((weights_j_l + global_weights) ** 2 / (sigma_inv_j + global_sigmas)).sum(axis=1) - (
global_weights ** 2 / global_sigmas).sum(axis=1)
return match_norms
def row_param_cost_simplified(global_weights, weights_j_l, sij_p_gs, red_term):
match_norms = ((weights_j_l + global_weights) ** 2 / sij_p_gs).sum(axis=1) - red_term
return match_norms
# def row_param_cost_simplified(global_weights, weights_j_l, sij_p_gs, red_term):
# global_weights_cuda = torch.from_numpy(global_weights).to('cuda:0')
# weights_j_l_cuda = torch.from_numpy(weights_j_l).to('cuda:0')
# sij_p_gs_cuda = torch.from_numpy(sij_p_gs).to('cuda:0')
# red_term_cuda = torch.from_numpy(red_term).to('cuda:0')
# match_norms_cuda = ((weights_j_l + global_weights) ** 2 / sij_p_gs).sum(axis=1) - red_term_cuda
# return match_norms_cuda
def rpc_parallel(global_weights, weights_j, sij_p_gs, red_term, iter_range):
res = np.array([(((weights_j[ir] + global_weights) ** 2 / sij_p_gs).sum(axis=1) - red_term) for ir in iter_range])
return res
def compute_cost(global_weights, weights_j, global_sigmas, sigma_inv_j, prior_mean_norm, prior_inv_sigma,
popularity_counts, gamma, J):
param_cost_start = time.time()
Lj = weights_j.shape[0]
counts = np.minimum(np.array(popularity_counts, dtype=np.float32), 10)
sij_p_gs = sigma_inv_j + global_sigmas
red_term = (global_weights ** 2 / global_sigmas).sum(axis=1)
stupid_line_start = time.time()
param_cost = np.array([row_param_cost_simplified(global_weights, weights_j[l], sij_p_gs, red_term) for l in range(Lj)], dtype=np.float32)
#logger.info("global weights shape: {}, weight j shape: {}, weight j(whole) shape: {}, global_sigmas: {}, sigma_inv_j: {}, param_cost shape: {}".format(global_weights.shape,
# weights_j[0].shape, weights_j.shape, global_sigmas.shape, sigma_inv_j.shape, param_cost.shape))
stupid_line_dur = time.time() - stupid_line_start
param_cost += np.log(counts / (J - counts))
param_cost_dur = time.time() - param_cost_start
## Nonparametric cost
nonparam_start = time.time()
L = global_weights.shape[0]
max_added = min(Lj, max(700 - L, 1))
nonparam_cost = np.outer((((weights_j + prior_mean_norm) ** 2 / (prior_inv_sigma + sigma_inv_j)).sum(axis=1) - (
prior_mean_norm ** 2 / prior_inv_sigma).sum()), np.ones(max_added, dtype=np.float32))
cost_pois = 2 * np.log(np.arange(1, max_added + 1))
nonparam_cost -= cost_pois
nonparam_cost += 2 * np.log(gamma / J)
nonparam_dur = time.time() - nonparam_start
#logger.info("Time cost of param cost: {}, of nonparam cost: {}, stupid line cost: {}, Lj: {}".format(param_cost_dur,
# nonparam_dur, stupid_line_dur, Lj))
full_cost = np.hstack((param_cost, nonparam_cost)).astype(np.float32)
return full_cost
def matching_upd_j(weights_j, global_weights, sigma_inv_j, global_sigmas, prior_mean_norm, prior_inv_sigma,
popularity_counts, gamma, J):
L = global_weights.shape[0]
compute_cost_start = time.time()
full_cost = compute_cost(global_weights.astype(np.float32), weights_j.astype(np.float32), global_sigmas.astype(np.float32), sigma_inv_j.astype(np.float32), prior_mean_norm.astype(np.float32), prior_inv_sigma.astype(np.float32),
popularity_counts, gamma, J)
compute_cost_dur = time.time() - compute_cost_start
#logger.info("###### Compute cost dur: {}".format(compute_cost_dur))
#row_ind, col_ind = linear_sum_assignment(-full_cost)
# please note that this can not run on non-Linux systems
start_time = time.time()
row_ind, col_ind = solve_dense(-full_cost)
solve_dur = time.time() - start_time
#logger.info("$$$$$$$$$$$Cost dtype: {}, cost shape: {}, dur: {}".format(full_cost.dtype, full_cost.shape, solve_dur))
assignment_j = []
new_L = L
for l, i in zip(row_ind, col_ind):
if i < L:
popularity_counts[i] += 1
assignment_j.append(i)
global_weights[i] += weights_j[l]
global_sigmas[i] += sigma_inv_j
else: # new neuron
popularity_counts += [1]
assignment_j.append(new_L)
new_L += 1
global_weights = np.vstack((global_weights, prior_mean_norm + weights_j[l]))
global_sigmas = np.vstack((global_sigmas, prior_inv_sigma + sigma_inv_j))
return global_weights, global_sigmas, popularity_counts, assignment_j
def objective(global_weights, global_sigmas):
obj = ((global_weights) ** 2 / global_sigmas).sum()
return obj
def patch_weights(w_j, L_next, assignment_j_c):
if assignment_j_c is None:
return w_j
new_w_j = np.zeros((w_j.shape[0], L_next))
new_w_j[:, assignment_j_c] = w_j
return new_w_j
def block_patching(w_j, L_next, assignment_j_c, layer_index, model_meta_data,
matching_shapes=None,
layer_type="fc",
dataset="cifar10",
network_name="lenet"):
"""
In CNN, weights patching needs to be handled block-wisely
We handle all conv layers and the first fc layer connected with the output of conv layers here
"""
# logger.info('--'*15)
# logger.info("ori w_j shape: {}".format(w_j.shape))
# logger.info("L_next: {}".format(L_next))
# logger.info("assignment_j_c: {}, length of assignment: {}".format(assignment_j_c, len(assignment_j_c)))
# logger.info("correspoding meta data: {}".format(model_meta_data[2 * layer_index - 2]))
# logger.info("layer index: {}".format(layer_index))
# logger.info('--'*15)
if assignment_j_c is None:
return w_j
layer_meta_data = model_meta_data[2 * layer_index - 2]
prev_layer_meta_data = model_meta_data[2 * layer_index - 2 - 2]
if layer_type == "conv":
new_w_j = np.zeros((w_j.shape[0], L_next*(layer_meta_data[-1]**2)))
# we generate a sequence of block indices
block_indices = [np.arange(i*layer_meta_data[-1]**2, (i+1)*layer_meta_data[-1]**2) for i in range(L_next)]
ori_block_indices = [np.arange(i*layer_meta_data[-1]**2, (i+1)*layer_meta_data[-1]**2) for i in range(layer_meta_data[1])]
for ori_id in range(layer_meta_data[1]):
new_w_j[:, block_indices[assignment_j_c[ori_id]]] = w_j[:, ori_block_indices[ori_id]]
elif layer_type == "fc":
# we need to estimate the output shape here:
if network_name == "simple-cnn":
if dataset in ("cifar10", "cinic10"):
shape_estimator = SimpleCNNContainerConvBlocks(input_channel=3, num_filters=matching_shapes, kernel_size=5)
elif dataset == "mnist":
shape_estimator = SimpleCNNContainerConvBlocks(input_channel=1, num_filters=matching_shapes, kernel_size=5)
elif network_name == "moderate-cnn":
if dataset in ("cifar10", "cinic10"):
shape_estimator = ModerateCNNContainerConvBlocks(num_filters=matching_shapes)
elif dataset == "mnist":
shape_estimator = ModerateCNNContainerConvBlocksMNIST(num_filters=matching_shapes)
elif network_name == "lenet":
shape_estimator = LeNetContainer(num_filters=matching_shapes, kernel_size=5)
if dataset in ("cifar10", "cinic10"):
dummy_input = torch.rand(1, 3, 32, 32)
elif dataset == "mnist":
dummy_input = torch.rand(1, 1, 28, 28)
estimated_output = shape_estimator(dummy_input)
new_w_j = np.zeros((w_j.shape[0], estimated_output.view(-1).size()[0]))
logger.info("estimated_output shape : {}".format(estimated_output.size()))
logger.info("meta data of previous layer: {}".format(prev_layer_meta_data))
block_indices = [np.arange(i*estimated_output.size()[-1]**2, (i+1)*estimated_output.size()[-1]**2) for i in range(L_next)]
#for i, bid in enumerate(block_indices):
# logger.info("{}, {}".format(i, bid))
#logger.info("**"*20)
ori_block_indices = [np.arange(i*estimated_output.size()[-1]**2, (i+1)*estimated_output.size()[-1]**2) for i in range(prev_layer_meta_data[0])]
#for i, obid in enumerate(ori_block_indices):
# logger.info("{}, {}".format(i, obid))
#logger.info("assignment c: {}".format(assignment_j_c))
for ori_id in range(prev_layer_meta_data[0]):
#logger.info("{} ------------ to ------------ {}".format(block_indices[assignment_j_c[ori_id]], ori_block_indices[ori_id]))
new_w_j[:, block_indices[assignment_j_c[ori_id]]] = w_j[:, ori_block_indices[ori_id]]
#logger.info("mapped block id: {}, ori block id: {}".format(block_indices[assignment_j_c[ori_id]], ori_block_indices[ori_id]))
# do a double check logger.infoing here:
#logger.info("{}".format(np.array_equal(new_w_j[:, block_indices[4]], w_j[:, ori_block_indices[0]])))
return new_w_j
def process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0):
J = len(batch_weights)
sigma_bias = sigma
sigma0_bias = sigma0
mu0_bias = 0.1
softmax_bias = [batch_weights[j][-1] for j in range(J)]
softmax_inv_sigma = [s / sigma_bias for s in last_layer_const]
softmax_bias = sum([b * s for b, s in zip(softmax_bias, softmax_inv_sigma)]) + mu0_bias / sigma0_bias
softmax_inv_sigma = 1 / sigma0_bias + sum(softmax_inv_sigma)
return softmax_bias, softmax_inv_sigma
def match_layer(weights_bias, sigma_inv_layer, mean_prior, sigma_inv_prior, gamma, it):
J = len(weights_bias)
group_order = sorted(range(J), key=lambda x: -weights_bias[x].shape[0])
batch_weights_norm = [w * s for w, s in zip(weights_bias, sigma_inv_layer)]
prior_mean_norm = mean_prior * sigma_inv_prior
global_weights = prior_mean_norm + batch_weights_norm[group_order[0]]
global_sigmas = np.outer(np.ones(global_weights.shape[0]), sigma_inv_prior + sigma_inv_layer[group_order[0]])
popularity_counts = [1] * global_weights.shape[0]
assignment = [[] for _ in range(J)]
assignment[group_order[0]] = list(range(global_weights.shape[0]))
## Initialize
for j in group_order[1:]:
global_weights, global_sigmas, popularity_counts, assignment_j = matching_upd_j(batch_weights_norm[j],
global_weights,
sigma_inv_layer[j],
global_sigmas, prior_mean_norm,
sigma_inv_prior,
popularity_counts, gamma, J)
assignment[j] = assignment_j
## Iterate over groups
for iteration in range(it):
random_order = np.random.permutation(J)
for j in random_order: # random_order:
to_delete = []
## Remove j
Lj = len(assignment[j])
for l, i in sorted(zip(range(Lj), assignment[j]), key=lambda x: -x[1]):
popularity_counts[i] -= 1
if popularity_counts[i] == 0:
del popularity_counts[i]
to_delete.append(i)
for j_clean in range(J):
for idx, l_ind in enumerate(assignment[j_clean]):
if i < l_ind and j_clean != j:
assignment[j_clean][idx] -= 1
elif i == l_ind and j_clean != j:
logger.info('Warning - weird unmatching')
else:
global_weights[i] = global_weights[i] - batch_weights_norm[j][l]
global_sigmas[i] -= sigma_inv_layer[j]
global_weights = np.delete(global_weights, to_delete, axis=0)
global_sigmas = np.delete(global_sigmas, to_delete, axis=0)
## Match j
global_weights, global_sigmas, popularity_counts, assignment_j = matching_upd_j(batch_weights_norm[j],
global_weights,
sigma_inv_layer[j],
global_sigmas,
prior_mean_norm,
sigma_inv_prior,
popularity_counts, gamma, J)
assignment[j] = assignment_j
logger.info('Number of global neurons is %d, gamma %f' % (global_weights.shape[0], gamma))
logger.info("***************Shape of global weights after match: {} ******************".format(global_weights.shape))
return assignment, global_weights, global_sigmas
def layer_wise_group_descent_old(batch_weights, layer_index, batch_frequencies, sigma_layers,
sigma0_layers, gamma_layers, it,
model_meta_data,
model_layer_type,
n_layers,
matching_shapes,
args):
"""
We implement a layer-wise matching here:
"""
if type(sigma_layers) is not list:
sigma_layers = (n_layers - 1) * [sigma_layers]
if type(sigma0_layers) is not list:
sigma0_layers = (n_layers - 1) * [sigma0_layers]
if type(gamma_layers) is not list:
gamma_layers = (n_layers - 1) * [gamma_layers]
last_layer_const = []
total_freq = sum(batch_frequencies)
for f in batch_frequencies:
last_layer_const.append(f / total_freq)
# J: number of workers
J = len(batch_weights)
# init_num_kernel: the number of conv filters in the first conv layer
init_num_kernel = batch_weights[0][0].shape[0]
# for saving (#channel * k * k)
init_channel_kernel_dims = []
for bw in batch_weights[0]:
if len(bw.shape) > 1:
init_channel_kernel_dims.append(bw.shape[1])
logger.info("init_channel_kernel_dims: {}".format(init_channel_kernel_dims))
sigma_bias_layers = sigma_layers
sigma0_bias_layers = sigma0_layers
mu0 = 0.
mu0_bias = 0.1
assignment_c = [None for j in range(J)]
L_next = None
sigma = sigma_layers[layer_index - 1]
sigma_bias = sigma_bias_layers[layer_index - 1]
gamma = gamma_layers[layer_index - 1]
sigma0 = sigma0_layers[layer_index - 1]
sigma0_bias = sigma0_bias_layers[layer_index - 1]
if layer_index <= 1:
weights_bias = [np.hstack((batch_weights[j][0], batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array(
init_channel_kernel_dims[layer_index - 1] * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array(init_channel_kernel_dims[layer_index - 1] * [mu0] + [mu0_bias])
# handling 2-layer neural network
if n_layers == 2:
sigma_inv_layer = [
np.array(D * [1 / sigma] + [1 / sigma_bias] + [y / sigma for y in last_layer_const[j]]) for j in range(J)]
else:
sigma_inv_layer = [np.array(init_channel_kernel_dims[layer_index - 1] * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif layer_index == (n_layers - 1) and n_layers > 2:
# our assumption is that this branch will consistently handle the last fc layers
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
# if first_fc_identifier:
# weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
# batch_weights[j][2 * layer_index - 1].reshape(-1, 1),
# batch_weights[j][2 * layer_index])) for j in range(J)]
# else:
# weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
# batch_weights[j][2 * layer_index - 1].reshape(-1, 1),
# batch_weights[j][2 * layer_index])) for j in range(J)]
# we switch to ignore the last layer here:
if first_fc_identifier:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
else:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array([1 / sigma0_bias] + (weights_bias[0].shape[1] - 1) * [1 / sigma0])
mean_prior = np.array([mu0_bias] + (weights_bias[0].shape[1] - 1) * [mu0])
# hwang: this needs to be handled carefully
#sigma_inv_layer = [np.array([1 / sigma_bias] + [y / sigma for y in last_layer_const[j]]) for j in range(J)]
#sigma_inv_layer = [np.array([1 / sigma_bias] + (weights_bias[j].shape[1] - 1) * [1 / sigma]) for j in range(J)]
#sigma_inv_layer = [np.array((matching_shapes[layer_index - 2]) * [1 / sigma] + [1 / sigma_bias] + [y / sigma for y in last_layer_const[j]]) for j in range(J)]
sigma_inv_layer = [np.array((matching_shapes[layer_index - 2]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
if 'conv' in layer_type or 'features' in layer_type:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2], batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
elif 'fc' in layer_type or 'classifier' in layer_type:
# we need to determine if the type of the current layer is the same as it's previous layer
# i.e. we need to identify if the fully connected layer we're working on is the first fc layer after the conv block
#first_fc_identifier = ('fc' in layer_type and 'conv' in prev_layer_type)
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
#logger.info("first_fc_identifier: {}".format(first_fc_identifier))
if first_fc_identifier:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T, batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
else:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T, batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array([1 / sigma0_bias] + (weights_bias[0].shape[1] - 1) * [1 / sigma0])
mean_prior = np.array([mu0_bias] + (weights_bias[0].shape[1] - 1) * [mu0])
sigma_inv_layer = [np.array([1 / sigma_bias] + (weights_bias[j].shape[1] - 1) * [1 / sigma]) for j in range(J)]
logger.info("Layer index: {}, init_num_kernel: {}".format(layer_index, init_num_kernel))
logger.info("weights bias: {}".format(weights_bias[0].shape))
logger.info("sigma_inv_prior shape: {}".format(sigma_inv_prior.shape))
logger.info("mean_prior shape: {}".format(mean_prior.shape))
assignment_c, global_weights_c, global_sigmas_c = match_layer(weights_bias, sigma_inv_layer, mean_prior,
sigma_inv_prior, gamma, it)
L_next = global_weights_c.shape[0]
if layer_index <= 1:
if n_layers == 2:
softmax_bias, softmax_inv_sigma = process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0)
global_weights_out = [softmax_bias]
global_inv_sigmas_out = [softmax_inv_sigma]
global_weights_out = [global_weights_c[:, :init_channel_kernel_dims[int(layer_index/2)]], global_weights_c[:, init_channel_kernel_dims[int(layer_index/2)]]]
global_inv_sigmas_out = [global_sigmas_c[:, :init_channel_kernel_dims[int(layer_index/2)]], global_sigmas_c[:, init_channel_kernel_dims[int(layer_index/2)]]]
logger.info("Branch A, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
elif layer_index == (n_layers - 1) and n_layers > 2:
softmax_bias, softmax_inv_sigma = process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0)
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
#first_fc_identifier = ('fc' in layer_type and 'conv' in prev_layer_type)
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
# if first_fc_identifier:
# global_weights_out = [global_weights_c[:, 0:-softmax_bias.shape[0]-1].T,
# global_weights_c[:, -softmax_bias.shape[0]-1],
# global_weights_c[:, -softmax_bias.shape[0]:],
# softmax_bias]
# global_inv_sigmas_out = [global_sigmas_c[:, 0:-softmax_bias.shape[0]-1].T,
# global_sigmas_c[:, -softmax_bias.shape[0]-1],
# global_sigmas_c[:, -softmax_bias.shape[0]:],
# softmax_inv_sigma]
# else:
# global_weights_out = [global_weights_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
# global_weights_c[:, matching_shapes[layer_index - 1 - 1]],
# global_weights_c[:, matching_shapes[layer_index - 1 - 1]+1:],
# softmax_bias]
# global_inv_sigmas_out = [global_sigmas_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
# global_sigmas_c[:, matching_shapes[layer_index - 1 - 1]],
# global_sigmas_c[:, matching_shapes[layer_index - 1 - 1]+1:],
# softmax_inv_sigma]
# remove fitting the last layer
if first_fc_identifier:
global_weights_out = [global_weights_c[:, 0:-softmax_bias.shape[0]-1].T,
global_weights_c[:, -softmax_bias.shape[0]-1]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:-softmax_bias.shape[0]-1].T,
global_sigmas_c[:, -softmax_bias.shape[0]-1]]
else:
global_weights_out = [global_weights_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
global_weights_c[:, matching_shapes[layer_index - 1 - 1]]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
global_sigmas_c[:, matching_shapes[layer_index - 1 - 1]]]
logger.info("Branch B, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
gwc_shape = global_weights_c.shape
if "conv" in layer_type or 'features' in layer_type:
global_weights_out = [global_weights_c[:, 0:gwc_shape[1]-1], global_weights_c[:, gwc_shape[1]-1]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:gwc_shape[1]-1], global_sigmas_c[:, gwc_shape[1]-1]]
elif "fc" in layer_type or 'classifier' in layer_type:
global_weights_out = [global_weights_c[:, 0:gwc_shape[1]-1].T, global_weights_c[:, gwc_shape[1]-1]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:gwc_shape[1]-1].T, global_sigmas_c[:, gwc_shape[1]-1]]
logger.info("Branch layer index, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
logger.info("global inv sigma out shape: {}".format([giso.shape for giso in global_inv_sigmas_out]))
map_out = [g_w / g_s for g_w, g_s in zip(global_weights_out, global_inv_sigmas_out)]
return map_out, assignment_c, L_next
def layer_wise_group_descent_pfnm(batch_weights, layer_index, batch_frequencies, sigma_layers,
sigma0_layers, gamma_layers, it,
model_meta_data,
model_layer_type,
n_layers,
matching_shapes,
args):
"""
We implement a layer-wise matching here:
"""
"""
We implement a layer-wise matching here:
"""
if type(sigma_layers) is not list:
sigma_layers = (n_layers - 1) * [sigma_layers]
if type(sigma0_layers) is not list:
sigma0_layers = (n_layers - 1) * [sigma0_layers]
if type(gamma_layers) is not list:
gamma_layers = (n_layers - 1) * [gamma_layers]
last_layer_const = []
total_freq = sum(batch_frequencies)
for f in batch_frequencies:
last_layer_const.append(f / total_freq)
# J: number of workers
J = len(batch_weights)
# init_num_kernel: the number of conv filters in the first conv layer
init_num_kernel = batch_weights[0][0].shape[0]
# for saving (#channel * k * k)
init_channel_kernel_dims = []
for bw in batch_weights[0]:
if len(bw.shape) > 1:
init_channel_kernel_dims.append(bw.shape[1])
logger.info("init_channel_kernel_dims: {}".format(init_channel_kernel_dims))
sigma_bias_layers = sigma_layers
sigma0_bias_layers = sigma0_layers
mu0 = 0.
mu0_bias = 0.1
assignment_c = [None for j in range(J)]
L_next = None
sigma = sigma_layers[layer_index - 1]
sigma_bias = sigma_bias_layers[layer_index - 1]
gamma = gamma_layers[layer_index - 1]
sigma0 = sigma0_layers[layer_index - 1]
sigma0_bias = sigma0_bias_layers[layer_index - 1]
if layer_index <= 1:
_next_layer_shape = model_meta_data[(layer_index+1) * 2 - 2]
weights_bias = [np.hstack((batch_weights[j][layer_index * 2 - 2],
batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array(init_channel_kernel_dims[layer_index - 1] * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array(init_channel_kernel_dims[layer_index - 1] * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array(init_channel_kernel_dims[layer_index - 1] * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif layer_index == (n_layers - 1) and n_layers > 2:
# our assumption is that this branch will consistently handle the last fc layers
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
_next_layer_shape = model_meta_data[(layer_index+1) * 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
if 'conv' in layer_type or 'features' in layer_type:
# hard coded a bit for now:
weights_bias = [np.hstack((batch_weights[j][layer_index * 2 - 2],
batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array((batch_weights[0][2 * layer_index - 2].shape[1]) * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array((batch_weights[0][2 * layer_index - 2].shape[1]) * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array((batch_weights[0][2 * layer_index - 2].shape[1]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif 'fc' in layer_type or 'classifier' in layer_type:
weights_bias = [np.hstack((batch_weights[j][layer_index * 2 - 2].T,
batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
logger.info("Layer index: {}, init_num_kernel: {}".format(layer_index, init_num_kernel))
logger.info("weights bias: {}".format(weights_bias[0].shape))
logger.info("sigma_inv_prior shape: {}".format(sigma_inv_prior.shape))
logger.info("mean_prior shape: {}".format(mean_prior.shape))
assignment_c, global_weights_c, global_sigmas_c = match_layer(weights_bias, sigma_inv_layer, mean_prior,
sigma_inv_prior, gamma, it)
L_next = global_weights_c.shape[0]
if layer_index <= 1:
global_weights_out = [global_weights_c[:, :init_channel_kernel_dims[2 * layer_index - 2]],
global_weights_c[:, init_channel_kernel_dims[2 * layer_index - 2]]]
global_inv_sigmas_out = [global_sigmas_c[:, :init_channel_kernel_dims[2 * layer_index - 2]],
global_sigmas_c[:, init_channel_kernel_dims[2 * layer_index - 2]]]
logger.info("Branch A, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
logger.info("global inv sigma out shape: {}".format([giso.shape for giso in global_inv_sigmas_out]))
map_out = [g_w / g_s for g_w, g_s in zip(global_weights_out, global_inv_sigmas_out)]
elif layer_index == (n_layers - 1) and n_layers > 2:
softmax_bias, softmax_inv_sigma = process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0)
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
__ori_shape = batch_weights[0][layer_index * 2 - 2].T.shape
global_weights_out = [global_weights_c[:, 0:__ori_shape[1]],
global_weights_c[:, __ori_shape[1]]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:__ori_shape[1]],
global_sigmas_c[:, __ori_shape[1]]]
map_out = [g_w / g_s for g_w, g_s in zip(global_weights_out, global_inv_sigmas_out)]
logger.info("Branch B, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
gwc_shape = global_weights_c.shape
if "conv" in layer_type or 'features' in layer_type:
global_weights_out = [global_weights_c[:, :init_channel_kernel_dims[layer_index - 1]],
global_weights_c[:, init_channel_kernel_dims[layer_index - 1]]]
global_inv_sigmas_out = [global_sigmas_c[:, :init_channel_kernel_dims[layer_index - 1]],
global_sigmas_c[:, init_channel_kernel_dims[layer_index - 1]]]
map_out = [g_w / g_s for g_w, g_s in zip(global_weights_out, global_inv_sigmas_out)]
elif "fc" in layer_type or 'classifier' in layer_type:
__ori_shape = batch_weights[0][layer_index * 2 - 2].T.shape
global_weights_out = [global_weights_c[:, 0:__ori_shape[1]],
global_weights_c[:, __ori_shape[1]]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:__ori_shape[1]],
global_sigmas_c[:, __ori_shape[1]]]
map_out = [g_w / g_s for g_w, g_s in zip(global_weights_out, global_inv_sigmas_out)]
logger.info("Branch layer index, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
return map_out, assignment_c, L_next
def layer_wise_group_descent_spahm(batch_weights, layer_index, batch_frequencies, sigma_layers,
sigma0_layers, gamma_layers, it,
model_meta_data,
model_layer_type,
n_layers,
matching_shapes,
args):
"""
We implement a layer-wise matching here:
"""
"""
We implement a layer-wise matching here:
"""
if type(sigma_layers) is not list:
sigma_layers = (n_layers - 1) * [sigma_layers]
if type(sigma0_layers) is not list:
sigma0_layers = (n_layers - 1) * [sigma0_layers]
if type(gamma_layers) is not list:
gamma_layers = (n_layers - 1) * [gamma_layers]
last_layer_const = []
total_freq = sum(batch_frequencies)
for f in batch_frequencies:
last_layer_const.append(f / total_freq)
# J: number of workers
J = len(batch_weights)
# init_num_kernel: the number of conv filters in the first conv layer
init_num_kernel = batch_weights[0][0].shape[0]
# for saving (#channel * k * k)
init_channel_kernel_dims = []
for bw in batch_weights[0]:
if len(bw.shape) > 1:
init_channel_kernel_dims.append(bw.shape[1])
logger.info("init_channel_kernel_dims: {}".format(init_channel_kernel_dims))
sigma_bias_layers = sigma_layers
sigma0_bias_layers = sigma0_layers
mu0 = 0.
mu0_bias = 0.1
assignment_c = [None for j in range(J)]
L_next = None
sigma = sigma_layers[layer_index - 1]
sigma_bias = sigma_bias_layers[layer_index - 1]
gamma = gamma_layers[layer_index - 1]
sigma0 = sigma0_layers[layer_index - 1]
sigma0_bias = sigma0_bias_layers[layer_index - 1]
if layer_index <= 1:
_next_layer_shape = model_meta_data[(layer_index+1) * 2 - 2]
weights_bias = [np.hstack((batch_weights[j][layer_index * 2 - 2],
batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array(init_channel_kernel_dims[layer_index - 1] * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array(init_channel_kernel_dims[layer_index - 1] * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array(init_channel_kernel_dims[layer_index - 1] * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif layer_index == (n_layers - 1) and n_layers > 2:
# our assumption is that this branch will consistently handle the last fc layers
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
_next_layer_shape = model_meta_data[(layer_index+1) * 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
if 'conv' in layer_type or 'features' in layer_type:
# hard coded a bit for now:
weights_bias = [np.hstack((batch_weights[j][layer_index * 2 - 2],
batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array((batch_weights[0][2 * layer_index - 2].shape[1]) * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array((batch_weights[0][2 * layer_index - 2].shape[1]) * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array((batch_weights[0][2 * layer_index - 2].shape[1]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif 'fc' in layer_type or 'classifier' in layer_type:
weights_bias = [np.hstack((batch_weights[j][layer_index * 2 - 2].T,
batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [mu0] + [mu0_bias])
sigma_inv_layer = [np.array((batch_weights[0][2 * layer_index - 2].T.shape[1]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
logger.info("Layer index: {}, init_num_kernel: {}".format(layer_index, init_num_kernel))
logger.info("weights bias: {}".format(weights_bias[0].shape))
logger.info("sigma_inv_prior shape: {}".format(sigma_inv_prior.shape))
logger.info("mean_prior shape: {}".format(mean_prior.shape))
# assignment_c, global_weights_c, global_sigmas_c = match_layer(weights_bias, sigma_inv_layer, mean_prior,
# sigma_inv_prior, gamma, it)
assignment_c, global_weights_c, popularity_counts, hyper_params = match_local_atoms(local_atoms=weights_bias,
sigma=sigma, sigma0=sigma0, gamma=gamma,
it=10, optimize_hyper=True)
L_next = global_weights_c.shape[0]
if layer_index <= 1:
global_weights_out = [global_weights_c[:, :init_channel_kernel_dims[2 * layer_index - 2]],
global_weights_c[:, init_channel_kernel_dims[2 * layer_index - 2]]]
#global_inv_sigmas_out = [global_sigmas_c[:, :init_channel_kernel_dims[2 * layer_index - 2]],
# global_sigmas_c[:, init_channel_kernel_dims[2 * layer_index - 2]]]
logger.info("Branch A, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
logger.info("global inv sigma out shape: {}".format([giso.shape for giso in global_weights_out]))
map_out = [g_w for g_w in global_weights_out]
elif layer_index == (n_layers - 1) and n_layers > 2:
softmax_bias, softmax_inv_sigma = process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0)
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
__ori_shape = batch_weights[0][layer_index * 2 - 2].T.shape
global_weights_out = [global_weights_c[:, 0:__ori_shape[1]],
global_weights_c[:, __ori_shape[1]]]
#global_inv_sigmas_out = [global_sigmas_c[:, 0:__ori_shape[1]],
# global_sigmas_c[:, __ori_shape[1]]]
map_out = [g_w for g_w in global_weights_out]
logger.info("Branch B, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
gwc_shape = global_weights_c.shape
if "conv" in layer_type or 'features' in layer_type:
global_weights_out = [global_weights_c[:, :init_channel_kernel_dims[layer_index - 1]],
global_weights_c[:, init_channel_kernel_dims[layer_index - 1]]]
#global_inv_sigmas_out = [global_sigmas_c[:, :init_channel_kernel_dims[layer_index - 1]],
# global_sigmas_c[:, init_channel_kernel_dims[layer_index - 1]]]
map_out = [g_w for g_w in global_weights_out]
elif "fc" in layer_type or 'classifier' in layer_type:
__ori_shape = batch_weights[0][layer_index * 2 - 2].T.shape
global_weights_out = [global_weights_c[:, 0:__ori_shape[1]],
global_weights_c[:, __ori_shape[1]]]
#global_inv_sigmas_out = [global_sigmas_c[:, 0:__ori_shape[1]],
# global_sigmas_c[:, __ori_shape[1]]]
map_out = [g_w for g_w in global_weights_out]
logger.info("Branch layer index, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
return map_out, assignment_c, L_next
def layer_wise_group_descent(batch_weights, layer_index, batch_frequencies, sigma_layers,
sigma0_layers, gamma_layers, it,
model_meta_data,
model_layer_type,
n_layers,
matching_shapes,
args):
"""
We implement a layer-wise matching here:
"""
if type(sigma_layers) is not list:
sigma_layers = (n_layers - 1) * [sigma_layers]
if type(sigma0_layers) is not list:
sigma0_layers = (n_layers - 1) * [sigma0_layers]
if type(gamma_layers) is not list:
gamma_layers = (n_layers - 1) * [gamma_layers]
last_layer_const = []
total_freq = sum(batch_frequencies)
for f in batch_frequencies:
last_layer_const.append(f / total_freq)
# J: number of workers
J = len(batch_weights)
# init_num_kernel: the number of conv filters in the first conv layer
init_num_kernel = batch_weights[0][0].shape[0]
# for saving (#channel * k * k)
init_channel_kernel_dims = []
for bw in batch_weights[0]:
if len(bw.shape) > 1:
init_channel_kernel_dims.append(bw.shape[1])
logger.info("init_channel_kernel_dims: {}".format(init_channel_kernel_dims))
sigma_bias_layers = sigma_layers
sigma0_bias_layers = sigma0_layers
mu0 = 0.
mu0_bias = 0.1
assignment_c = [None for j in range(J)]
L_next = None
sigma = sigma_layers[layer_index - 1]
sigma_bias = sigma_bias_layers[layer_index - 1]
gamma = gamma_layers[layer_index - 1]
sigma0 = sigma0_layers[layer_index - 1]
sigma0_bias = sigma0_bias_layers[layer_index - 1]
if layer_index <= 1:
weights_bias = [np.hstack((batch_weights[j][0], batch_weights[j][layer_index * 2 - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array(
init_channel_kernel_dims[layer_index - 1] * [1 / sigma0] + [1 / sigma0_bias])
mean_prior = np.array(init_channel_kernel_dims[layer_index - 1] * [mu0] + [mu0_bias])
# handling 2-layer neural network
if n_layers == 2:
sigma_inv_layer = [
np.array(D * [1 / sigma] + [1 / sigma_bias] + [y / sigma for y in last_layer_const[j]]) for j in range(J)]
else:
sigma_inv_layer = [np.array(init_channel_kernel_dims[layer_index - 1] * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
elif layer_index == (n_layers - 1) and n_layers > 2:
# our assumption is that this branch will consistently handle the last fc layers
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
# if first_fc_identifier:
# weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
# batch_weights[j][2 * layer_index - 1].reshape(-1, 1),
# batch_weights[j][2 * layer_index])) for j in range(J)]
# else:
# weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
# batch_weights[j][2 * layer_index - 1].reshape(-1, 1),
# batch_weights[j][2 * layer_index])) for j in range(J)]
# we switch to ignore the last layer here:
if first_fc_identifier:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
else:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T,
batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array([1 / sigma0_bias] + (weights_bias[0].shape[1] - 1) * [1 / sigma0])
mean_prior = np.array([mu0_bias] + (weights_bias[0].shape[1] - 1) * [mu0])
# hwang: this needs to be handled carefully
#sigma_inv_layer = [np.array([1 / sigma_bias] + [y / sigma for y in last_layer_const[j]]) for j in range(J)]
#sigma_inv_layer = [np.array([1 / sigma_bias] + (weights_bias[j].shape[1] - 1) * [1 / sigma]) for j in range(J)]
#sigma_inv_layer = [np.array((matching_shapes[layer_index - 2]) * [1 / sigma] + [1 / sigma_bias] + [y / sigma for y in last_layer_const[j]]) for j in range(J)]
#sigma_inv_layer = [np.array((matching_shapes[layer_index - 2]) * [1 / sigma] + [1 / sigma_bias]) for j in range(J)]
sigma_inv_layer = [np.array([1 / sigma_bias] + (weights_bias[j].shape[1] - 1) * [1 / sigma]) for j in range(J)]
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
if 'conv' in layer_type or 'features' in layer_type:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2], batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
elif 'fc' in layer_type or 'classifier' in layer_type:
# we need to determine if the type of the current layer is the same as it's previous layer
# i.e. we need to identify if the fully connected layer we're working on is the first fc layer after the conv block
#first_fc_identifier = ('fc' in layer_type and 'conv' in prev_layer_type)
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
#logger.info("first_fc_identifier: {}".format(first_fc_identifier))
if first_fc_identifier:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T, batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
else:
weights_bias = [np.hstack((batch_weights[j][2 * layer_index - 2].T, batch_weights[j][2 * layer_index - 1].reshape(-1, 1))) for j in range(J)]
sigma_inv_prior = np.array([1 / sigma0_bias] + (weights_bias[0].shape[1] - 1) * [1 / sigma0])
mean_prior = np.array([mu0_bias] + (weights_bias[0].shape[1] - 1) * [mu0])
sigma_inv_layer = [np.array([1 / sigma_bias] + (weights_bias[j].shape[1] - 1) * [1 / sigma]) for j in range(J)]
logger.info("Layer index: {}, init_num_kernel: {}".format(layer_index, init_num_kernel))
logger.info("weights bias: {}".format(weights_bias[0].shape))
logger.info("sigma_inv_prior shape: {}".format(sigma_inv_prior.shape))
logger.info("mean_prior shape: {}".format(mean_prior.shape))
logger.info("sigma_inv_layer shape: {}".format(sigma_inv_layer[0].shape))
assignment_c, global_weights_c, global_sigmas_c = match_layer(weights_bias, sigma_inv_layer, mean_prior,
sigma_inv_prior, gamma, it)
L_next = global_weights_c.shape[0]
if layer_index <= 1:
if n_layers == 2:
softmax_bias, softmax_inv_sigma = process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0)
global_weights_out = [softmax_bias]
global_inv_sigmas_out = [softmax_inv_sigma]
global_weights_out = [global_weights_c[:, :init_channel_kernel_dims[int(layer_index/2)]], global_weights_c[:, init_channel_kernel_dims[int(layer_index/2)]]]
global_inv_sigmas_out = [global_sigmas_c[:, :init_channel_kernel_dims[int(layer_index/2)]], global_sigmas_c[:, init_channel_kernel_dims[int(layer_index/2)]]]
logger.info("Branch A, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
elif layer_index == (n_layers - 1) and n_layers > 2:
softmax_bias, softmax_inv_sigma = process_softmax_bias(batch_weights, last_layer_const, sigma, sigma0)
layer_type = model_layer_type[2 * layer_index - 2]
prev_layer_type = model_layer_type[2 * layer_index - 2 - 2]
#first_fc_identifier = ('fc' in layer_type and 'conv' in prev_layer_type)
first_fc_identifier = (('fc' in layer_type or 'classifier' in layer_type) and ('conv' in prev_layer_type or 'features' in layer_type))
# if first_fc_identifier:
# global_weights_out = [global_weights_c[:, 0:-softmax_bias.shape[0]-1].T,
# global_weights_c[:, -softmax_bias.shape[0]-1],
# global_weights_c[:, -softmax_bias.shape[0]:],
# softmax_bias]
# global_inv_sigmas_out = [global_sigmas_c[:, 0:-softmax_bias.shape[0]-1].T,
# global_sigmas_c[:, -softmax_bias.shape[0]-1],
# global_sigmas_c[:, -softmax_bias.shape[0]:],
# softmax_inv_sigma]
# else:
# global_weights_out = [global_weights_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
# global_weights_c[:, matching_shapes[layer_index - 1 - 1]],
# global_weights_c[:, matching_shapes[layer_index - 1 - 1]+1:],
# softmax_bias]
# global_inv_sigmas_out = [global_sigmas_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
# global_sigmas_c[:, matching_shapes[layer_index - 1 - 1]],
# global_sigmas_c[:, matching_shapes[layer_index - 1 - 1]+1:],
# softmax_inv_sigma]
# remove fitting the last layer
# if first_fc_identifier:
# global_weights_out = [global_weights_c[:, 0:-softmax_bias.shape[0]-1].T,
# global_weights_c[:, -softmax_bias.shape[0]-1]]
# global_inv_sigmas_out = [global_sigmas_c[:, 0:-softmax_bias.shape[0]-1].T,
# global_sigmas_c[:, -softmax_bias.shape[0]-1]]
# else:
# global_weights_out = [global_weights_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
# global_weights_c[:, matching_shapes[layer_index - 1 - 1]]]
# global_inv_sigmas_out = [global_sigmas_c[:, 0:matching_shapes[layer_index - 1 - 1]].T,
# global_sigmas_c[:, matching_shapes[layer_index - 1 - 1]]]
layer_type = model_layer_type[2 * layer_index - 2]
gwc_shape = global_weights_c.shape
if "conv" in layer_type or 'features' in layer_type:
global_weights_out = [global_weights_c[:, 0:gwc_shape[1]-1], global_weights_c[:, gwc_shape[1]-1]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:gwc_shape[1]-1], global_sigmas_c[:, gwc_shape[1]-1]]
elif "fc" in layer_type or 'classifier' in layer_type:
global_weights_out = [global_weights_c[:, 0:gwc_shape[1]-1].T, global_weights_c[:, gwc_shape[1]-1]]
global_inv_sigmas_out = [global_sigmas_c[:, 0:gwc_shape[1]-1].T, global_sigmas_c[:, gwc_shape[1]-1]]
logger.info("#### Branch B, Layer index: {}, Global weights out shapes: {}".format(layer_index, [gwo.shape for gwo in global_weights_out]))
elif (layer_index > 1 and layer_index < (n_layers - 1)):
layer_type = model_layer_type[2 * layer_index - 2]
gwc_shape = global_weights_c.shape
if "conv" in layer_type or 'features' in layer_type: