title | type | weight |
---|---|---|
2.11 Binary Search |
docs |
11 |
- 二分搜索的经典写法。需要注意的三点:
- 循环退出条件,注意是 low <= high,而不是 low < high。
- mid 的取值,mid := low + (high-low)>>1
- low 和 high 的更新。low = mid + 1,high = mid - 1。
func binarySearchMatrix(nums []int, target int) int {
low, high := 0, len(nums)-1
for low <= high {
mid := low + (high-low)>>1
if nums[mid] == target {
return mid
} else if nums[mid] > target {
high = mid - 1
} else {
low = mid + 1
}
}
return -1
}
- 二分搜索的变种写法。有 4 个基本变种:
- 查找第一个与 target 相等的元素,时间复杂度 O(logn)
- 查找最后一个与 target 相等的元素,时间复杂度 O(logn)
- 查找第一个大于等于 target 的元素,时间复杂度 O(logn)
- 查找最后一个小于等于 target 的元素,时间复杂度 O(logn)
// 二分查找第一个与 target 相等的元素,时间复杂度 O(logn)
func searchFirstEqualElement(nums []int, target int) int {
low, high := 0, len(nums)-1
for low <= high {
mid := low + ((high - low) >> 1)
if nums[mid] > target {
high = mid - 1
} else if nums[mid] < target {
low = mid + 1
} else {
if (mid == 0) || (nums[mid-1] != target) { // 找到第一个与 target 相等的元素
return mid
}
high = mid - 1
}
}
return -1
}
// 二分查找最后一个与 target 相等的元素,时间复杂度 O(logn)
func searchLastEqualElement(nums []int, target int) int {
low, high := 0, len(nums)-1
for low <= high {
mid := low + ((high - low) >> 1)
if nums[mid] > target {
high = mid - 1
} else if nums[mid] < target {
low = mid + 1
} else {
if (mid == len(nums)-1) || (nums[mid+1] != target) { // 找到最后一个与 target 相等的元素
return mid
}
low = mid + 1
}
}
return -1
}
// 二分查找第一个大于等于 target 的元素,时间复杂度 O(logn)
func searchFirstGreaterElement(nums []int, target int) int {
low, high := 0, len(nums)-1
for low <= high {
mid := low + ((high - low) >> 1)
if nums[mid] >= target {
if (mid == 0) || (nums[mid-1] < target) { // 找到第一个大于等于 target 的元素
return mid
}
high = mid - 1
} else {
low = mid + 1
}
}
return -1
}
// 二分查找最后一个小于等于 target 的元素,时间复杂度 O(logn)
func searchLastLessElement(nums []int, target int) int {
low, high := 0, len(nums)-1
for low <= high {
mid := low + ((high - low) >> 1)
if nums[mid] <= target {
if (mid == len(nums)-1) || (nums[mid+1] > target) { // 找到最后一个小于等于 target 的元素
return mid
}
low = mid + 1
} else {
high = mid - 1
}
}
return -1
}
- 在基本有序的数组中用二分搜索。经典解法可以解,变种写法也可以写,常见的题型,在山峰数组中找山峰,在旋转有序数组中找分界点。第 33 题,第 81 题,第 153 题,第 154 题,第 162 题,第 852 题
func peakIndexInMountainArray(A []int) int {
low, high := 0, len(A)-1
for low < high {
mid := low + (high-low)>>1
// 如果 mid 较大,则左侧存在峰值,high = m,如果 mid + 1 较大,则右侧存在峰值,low = mid + 1
if A[mid] > A[mid+1] {
high = mid
} else {
low = mid + 1
}
}
return low
}
- max-min 最大值最小化问题。求在最小满足条件的情况下的最大值。第 410 题,第 875 题,第 1011 题,第 1283 题。
{{.AvailableTagTable}}