-
Notifications
You must be signed in to change notification settings - Fork 0
/
co_routine.cpp
1326 lines (1124 loc) · 32.3 KB
/
co_routine.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Tencent is pleased to support the open source community by making Libco available.
* Copyright (C) 2014 THL A29 Limited, a Tencent company. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "co_routine.h"
#include "co_routine_inner.h"
#include "co_epoll.h"
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <string>
#include <map>
#include <poll.h>
#include <sys/time.h>
#include <errno.h>
#include <assert.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <limits.h>
extern "C"
{
extern void coctx_swap( coctx_t *,coctx_t* ) asm("coctx_swap");
};
using namespace std;
stCoRoutine_t *GetCurrCo( stCoRoutineEnv_t *env );
struct stCoEpoll_t;
//全局的本线程共享的记录co调用链的结构,随着主协程一起被创建,简称线程env
struct stCoRoutineEnv_t
{
//保存调用链的栈,libco是一个非对称的co模型,每次调用者(return)调用被调用者(call)的
//时候,把被调用者压栈,然后iCallStackSize+1,然后从被调用者返回的时候再弹出并且将
//iCallStackSize-1.每个线程共有一个,记录本线程上运行的协程的执行顺序
//所以这个pCallStack结构即是保存协程控制块指针类型的数组,用于记录这个调用关系
//pCallStack[0]即指向主协程
stCoRoutine_t *pCallStack[ 128 ];
//当前有几个 co 在运行,可以通过pCallStack[env->iCallStackSize - 1]获取当前正在运行的co的控制块
int iCallStackSize;
//用于epoll
stCoEpoll_t *pEpoll;
//for copy stack log lastco and nextco
//当前占有共享栈的co和将要切换运行的co,在不使用共享栈的时候这两个都是空指针
stCoRoutine_t* pending_co;
stCoRoutine_t* occupy_co;
};
//int socket(int domain, int type, int protocol);
void co_log_err( const char *fmt,... )
{
}
#if defined( __LIBCO_RDTSCP__)
static unsigned long long counter(void)
{
register uint32_t lo, hi;
register unsigned long long o;
__asm__ __volatile__ (
"rdtscp" : "=a"(lo), "=d"(hi)::"%rcx"
);
o = hi;
o <<= 32;
return (o | lo);
}
static unsigned long long getCpuKhz()
{
FILE *fp = fopen("/proc/cpuinfo","r");
if(!fp) return 1;
char buf[4096] = {0};
fread(buf,1,sizeof(buf),fp);
fclose(fp);
char *lp = strstr(buf,"cpu MHz");
if(!lp) return 1;
lp += strlen("cpu MHz");
while(*lp == ' ' || *lp == '\t' || *lp == ':')
{
++lp;
}
double mhz = atof(lp);
unsigned long long u = (unsigned long long)(mhz * 1000);
return u;
}
#endif
static unsigned long long GetTickMS()
{
#if defined( __LIBCO_RDTSCP__)
static uint32_t khz = getCpuKhz();
return counter() / khz;
#else
struct timeval now = { 0 };
gettimeofday( &now,NULL );
unsigned long long u = now.tv_sec;
u *= 1000;
u += now.tv_usec / 1000;
return u;
#endif
}
/* no longer use
static pid_t GetPid()
{
static __thread pid_t pid = 0;
static __thread pid_t tid = 0;
if( !pid || !tid || pid != getpid() )
{
pid = getpid();
#if defined( __APPLE__ )
tid = syscall( SYS_gettid );
if( -1 == (long)tid )
{
tid = pid;
}
#elif defined( __FreeBSD__ )
syscall(SYS_thr_self, &tid);
if( tid < 0 )
{
tid = pid;
}
#else
tid = syscall( __NR_gettid );
#endif
}
return tid;
}
static pid_t GetPid()
{
char **p = (char**)pthread_self();
return p ? *(pid_t*)(p + 18) : getpid();
}
*/
template <class T,class TLink>
void RemoveFromLink(T *ap)
{
TLink *lst = ap->pLink;
if(!lst) return ;
assert( lst->head && lst->tail );
if( ap == lst->head )
{
lst->head = ap->pNext;
if(lst->head)
{
lst->head->pPrev = NULL;
}
}
else
{
if(ap->pPrev)
{
ap->pPrev->pNext = ap->pNext;
}
}
if( ap == lst->tail )
{
lst->tail = ap->pPrev;
if(lst->tail)
{
lst->tail->pNext = NULL;
}
}
else
{
ap->pNext->pPrev = ap->pPrev;
}
ap->pPrev = ap->pNext = NULL;
ap->pLink = NULL;
}
//apLink是一个双向链表的存放 head 和 tail 的 mark 节点
//ap 是希望插入双向链表的item节点
template <class TNode,class TLink>
void inline AddTail(TLink*apLink,TNode *ap)
{
if( ap->pLink )
{
return ;
}
if(apLink->tail)
{
apLink->tail->pNext = (TNode*)ap;
ap->pNext = NULL;
ap->pPrev = apLink->tail;
apLink->tail = ap;
}
else
{
apLink->head = apLink->tail = ap;
ap->pNext = ap->pPrev = NULL;
}
ap->pLink = apLink;
}
template <class TNode,class TLink>
void inline PopHead( TLink*apLink )
{
if( !apLink->head )
{
return ;
}
TNode *lp = apLink->head;
if( apLink->head == apLink->tail )
{
apLink->head = apLink->tail = NULL;
}
else
{
apLink->head = apLink->head->pNext;
}
lp->pPrev = lp->pNext = NULL;
lp->pLink = NULL;
if( apLink->head )
{
apLink->head->pPrev = NULL;
}
}
template <class TNode,class TLink>
void inline Join( TLink*apLink,TLink *apOther )
{
//printf("apOther %p\n",apOther);
if( !apOther->head )
{
return ;
}
TNode *lp = apOther->head;
while( lp )
{
lp->pLink = apLink;
lp = lp->pNext;
}
lp = apOther->head;
if(apLink->tail)
{
apLink->tail->pNext = (TNode*)lp;
lp->pPrev = apLink->tail;
apLink->tail = apOther->tail;
}
else
{
apLink->head = apOther->head;
apLink->tail = apOther->tail;
}
apOther->head = apOther->tail = NULL;
}
/////////////////for copy stack //////////////////////////
//分配一手子栈,并且初始化一个子栈控制块返回
stStackMem_t* co_alloc_stackmem(unsigned int stack_size)
{
//分配共享栈子栈的控制块
stStackMem_t* stack_mem = (stStackMem_t*)malloc(sizeof(stStackMem_t));
stack_mem->occupy_co= NULL;
stack_mem->stack_size = stack_size;
//实际上的子栈的分配,可以看出实际上是分配到堆上的
stack_mem->stack_buffer = (char*)malloc(stack_size);
stack_mem->stack_bp = stack_mem->stack_buffer + stack_size;
return stack_mem;
}
//从共享栈中分配一手子栈
stShareStack_t* co_alloc_sharestack(int count, int stack_size)
{
//初始化共享栈控制块结构
stShareStack_t* share_stack = (stShareStack_t*)malloc(sizeof(stShareStack_t));
//还没分配的第一个位置设置为 0
share_stack->alloc_idx = 0;
//共享栈大小设置
share_stack->stack_size = stack_size;
//alloc stack array
share_stack->count = count;
//分配 count 个子栈控制块结构大小
stStackMem_t** stack_array = (stStackMem_t**)calloc(count, sizeof(stStackMem_t*));
for (int i = 0; i < count; i++)
{
stack_array[i] = co_alloc_stackmem(stack_size);
}
share_stack->stack_array = stack_array;
return share_stack;
}
//从共享栈中找到一个没人用的子栈,然后把子栈控制块返回
static stStackMem_t* co_get_stackmem(stShareStack_t* share_stack)
{
if (!share_stack)
{
return NULL;
}
int idx = share_stack->alloc_idx % share_stack->count;
share_stack->alloc_idx++;
return share_stack->stack_array[idx];
}
// ----------------------------------------------------------------------------
struct stTimeoutItemLink_t;
struct stTimeoutItem_t;
//epolling 控制块,内部封装了 Linux的 epolling 对象,以及时间轮定时器等
struct stCoEpoll_t
{
//Linux 中epoll实例的文件描述符,直接使用 epolling_create()接口创建的
int iEpollFd;
//一次epoll_wait()最多返回的就绪事件个数,epoll_wait()系统调用的第三个参数
static const int _EPOLL_SIZE = 1024 * 10;
//时间轮定时器
struct stTimeout_t *pTimeout;
//存放已经超时的的事件的链表
struct stTimeoutItemLink_t *pstTimeoutList;
//存放epoll_wait()得到的就绪事件和定时器超时事件
struct stTimeoutItemLink_t *pstActiveList;
//对epoll_wait()的第二个参数的封装,即一次epoll_wait()的结果集
co_epoll_res *result;
};
typedef void (*OnPreparePfn_t)( stTimeoutItem_t *,struct epoll_event &ev, stTimeoutItemLink_t *active );
typedef void (*OnProcessPfn_t)( stTimeoutItem_t *);
//用于存放超时 or 就绪的事件的事件控制块,被串到双向链表中,
//作为双向链表的 item,同一个链表中的元素,超时时间是相同的
struct stTimeoutItem_t
{
enum
{
eMaxTimeout = 40 * 1000 //40s
};
stTimeoutItem_t *pPrev;
stTimeoutItem_t *pNext;
stTimeoutItemLink_t *pLink;
//盲猜是过期时间
unsigned long long ullExpireTime;
//盲猜是预处理和后处理的回调函数
OnPreparePfn_t pfnPrepare;
OnProcessPfn_t pfnProcess;
void *pArg; // 就是存放 co 的指针,可以通过强转成 co控制块指针,然后直接使用 co.resume()等 api
bool bTimeout; //是否已经超时
};
//存放 超时事件 or 就绪事件的链表的头尾指针,即相当于是双向链表的 mark 节点
struct stTimeoutItemLink_t
{
stTimeoutItem_t *head;
stTimeoutItem_t *tail;
};
//时间轮定时器
struct stTimeout_t
{
stTimeoutItemLink_t *pItems; //数组,数组中的每个元素都是一个双向链表的 mark 节点
int iItemSize; //pItems数组的长度
//当前最近超时时间的时间戳,单位是 ms,co 初始化时,ullStart被初始化成当前时刻的时间戳
unsigned long long ullStart;
long long llStartIdx; //当前最近的马上就要超时的事件对应的 idx
};
//初始化一个每个 thread 共用一个的时间轮,这个时间轮的精度是 ms,最大可以存放 1min 的超时事件,所以有一个60 * 1000 大小的
//存放链表的数组,每个元素存放了一个双向链表的头尾指针,位于双向链表上的stTimeoutItem_t对象的过期时间相同.
stTimeout_t *AllocTimeout( int iSize )
{
stTimeout_t *lp = (stTimeout_t*)calloc( 1,sizeof(stTimeout_t) );
lp->iItemSize = iSize;
lp->pItems = (stTimeoutItemLink_t*)calloc( 1,sizeof(stTimeoutItemLink_t) * lp->iItemSize );
//初始化成当前的 ms
lp->ullStart = GetTickMS();
//初始化成 idx = 0
lp->llStartIdx = 0;
return lp;
}
//释放时间轮
void FreeTimeout( stTimeout_t *apTimeout )
{
free( apTimeout->pItems );
free ( apTimeout );
}
//将一个定时事件加入到时间轮中,从数据结构的视角来看,是
//向时间轮中根据当前的时间和超时的事件添加一个双向链表中的item
int AddTimeout( stTimeout_t *apTimeout,stTimeoutItem_t *apItem ,unsigned long long allNow )
{
if( apTimeout->ullStart == 0 )
{
apTimeout->ullStart = allNow;
apTimeout->llStartIdx = 0;
}
if( allNow < apTimeout->ullStart )
{
//传进来的当前的事件不能比当前的时间轮中的最近的一个事件的过期时间还要早,否则报错
co_log_err("CO_ERR: AddTimeout line %d allNow %llu apTimeout->ullStart %llu",
__LINE__,allNow,apTimeout->ullStart);
return __LINE__;
}
if( apItem->ullExpireTime < allNow )
{
//传进来的事件的过期时间也不能比传进来的当前的时间早,否则报错
co_log_err("CO_ERR: AddTimeout line %d apItem->ullExpireTime %llu allNow %llu apTimeout->ullStart %llu",
__LINE__,apItem->ullExpireTime,allNow,apTimeout->ullStart);
return __LINE__;
}
//计算应该放在时间轮的哪个位置.ullStart指向了当前的时间轮中的最早过期的一个事件的过期时间
//这样减一手就能得到我们要插入的事件的距离最近的一个过期事件的偏移
unsigned long long diff = apItem->ullExpireTime - apTimeout->ullStart;
if( diff >= (unsigned long long)apTimeout->iItemSize )
{
//这个差值不能大于我们时间轮的大小
diff = apTimeout->iItemSize - 1;
co_log_err("CO_ERR: AddTimeout line %d diff %d",
__LINE__,diff);
//return __LINE__;
}
//串到时间轮的对应的双向链表的末尾
//运算逻辑:
//(时间轮数组头部 + 偏移量(注意是指针操作,对指针+1 = 实际地址+指针长度)
AddTail( apTimeout->pItems + ( apTimeout->llStartIdx + diff ) % apTimeout->iItemSize , apItem );
return 0;
}
inline void TakeAllTimeout( stTimeout_t *apTimeout,unsigned long long allNow,stTimeoutItemLink_t *apResult )
{
if( apTimeout->ullStart == 0 )
{
apTimeout->ullStart = allNow;
apTimeout->llStartIdx = 0;
}
if( allNow < apTimeout->ullStart )
{
return ;
}
int cnt = allNow - apTimeout->ullStart + 1;
if( cnt > apTimeout->iItemSize )
{
cnt = apTimeout->iItemSize;
}
if( cnt < 0 )
{
return;
}
for( int i = 0;i<cnt;i++)
{
int idx = ( apTimeout->llStartIdx + i) % apTimeout->iItemSize;
Join<stTimeoutItem_t,stTimeoutItemLink_t>( apResult,apTimeout->pItems + idx );
}
apTimeout->ullStart = allNow;
apTimeout->llStartIdx += cnt - 1;
}
//对传进 co 的实际执行的函数的封装,因为所有的 co 执行完其绑定的函数一定要 yield,否则程序出错,所以做了这一层
//封装,让业务层代码不用 yield
static int CoRoutineFunc( stCoRoutine_t *co,void * )
{
if( co->pfn )
{
co->pfn( co->arg );
}
co->cEnd = 1;
stCoRoutineEnv_t *env = co->env;
//代码执行到这里,co绑定的函数的代码已经执行完了,必须要使用yield_env返回调用者
co_yield_env( env );
return 0;
}
//创建一个co控制块
struct stCoRoutine_t *co_create_env( stCoRoutineEnv_t * env, const stCoRoutineAttr_t* attr,
pfn_co_routine_t pfn,void *arg )
{
stCoRoutineAttr_t at;
//更改传入的栈的大小为合法大小
if( attr )
{
memcpy( &at,attr,sizeof(at) );
}
if( at.stack_size <= 0 )
{
at.stack_size = 128 * 1024;
}
else if( at.stack_size > 1024 * 1024 * 8 )
{
at.stack_size = 1024 * 1024 * 8;
}
if( at.stack_size & 0xFFF )
{
at.stack_size &= ~0xFFF;
at.stack_size += 0x1000;
}
//初始化co控制块
stCoRoutine_t *lp = (stCoRoutine_t*)malloc( sizeof(stCoRoutine_t) );
memset( lp,0,(long)(sizeof(stCoRoutine_t)));
lp->env = env;
lp->pfn = pfn;
lp->arg = arg;
stStackMem_t* stack_mem = NULL;
if( at.share_stack )
{
//如果配置的是使用共享栈,那么从已经分配好的共享栈中划分一个区域,并且获取一个控制块
stack_mem = co_get_stackmem( at.share_stack);
at.stack_size = at.share_stack->stack_size;
}
else
{
//如果配置的是独立栈,那么直接分配一个子栈
stack_mem = co_alloc_stackmem(at.stack_size);
}
//赋值栈的地址
lp->stack_mem = stack_mem;
//将栈的地址填充到co 的上下文中,这样下次 co 切换,co 可以直接使用这个栈当做自己程序的栈
lp->ctx.ss_sp = stack_mem->stack_buffer;
lp->ctx.ss_size = at.stack_size;
//初始化剩下的stStackMem_t结构
lp->cStart = 0;
lp->cEnd = 0;
lp->cIsMain = 0;
lp->cEnableSysHook = 0;
lp->cIsShareStack = at.share_stack != NULL;
lp->save_size = 0;
lp->save_buffer = NULL;
return lp;
}
int co_create( stCoRoutine_t **ppco,const stCoRoutineAttr_t *attr,pfn_co_routine_t pfn,void *arg )
{
if( !co_get_curr_thread_env() )
{
//如果当前的thread的env没有被初始化,那么初始化一下
co_init_curr_thread_env();
}
//使用传进来的参数,初始化一手本 co 的env
stCoRoutine_t *co = co_create_env( co_get_curr_thread_env(), attr, pfn,arg );
*ppco = co;
return 0;
}
void co_free( stCoRoutine_t *co )
{
if (!co->cIsShareStack)
{
free(co->stack_mem->stack_buffer);
free(co->stack_mem);
}
//walkerdu fix at 2018-01-20
//存在内存泄漏
else
{
if(co->save_buffer)
free(co->save_buffer);
if(co->stack_mem->occupy_co == co)
co->stack_mem->occupy_co = NULL;
}
free( co );
}
void co_release( stCoRoutine_t *co )
{
co_free( co );
}
void co_swap(stCoRoutine_t* curr, stCoRoutine_t* pending_co);
//运行参数co指向的co
void co_resume( stCoRoutine_t *co )
{
//获取当前的线程env
stCoRoutineEnv_t *env = co->env;
//获取当前的co控制块
stCoRoutine_t *lpCurrRoutine = env->pCallStack[ env->iCallStackSize - 1 ];
if( !co->cStart )
{
//当且仅当首次启动携程时用到
coctx_make( &co->ctx,(coctx_pfn_t)CoRoutineFunc,co,0 );
co->cStart = 1;
}
//添加到调用链中,并且切换运行
env->pCallStack[ env->iCallStackSize++ ] = co;
co_swap( lpCurrRoutine, co );
}
// walkerdu 2018-01-14
// 用于reset超时无法重复使用的协程
void co_reset(stCoRoutine_t * co)
{
if(!co->cStart || co->cIsMain)
return;
co->cStart = 0;
co->cEnd = 0;
// 如果当前协程有共享栈被切出的buff,要进行释放
if(co->save_buffer)
{
free(co->save_buffer);
co->save_buffer = NULL;
co->save_size = 0;
}
// 如果共享栈被当前协程占用,要释放占用标志,否则被切换,会执行save_stack_buffer()
if(co->stack_mem->occupy_co == co)
co->stack_mem->occupy_co = NULL;
}
//进行co的切换,切换成return co
void co_yield_env( stCoRoutineEnv_t *env )
{
//last 保存希望返回的 co
stCoRoutine_t *last = env->pCallStack[ env->iCallStackSize - 2 ];
//curr 保存当前的 co
stCoRoutine_t *curr = env->pCallStack[ env->iCallStackSize - 1 ];
env->iCallStackSize--;
co_swap( curr, last);
}
//进行co的切换,切换成return co
void co_yield_ct()
{
co_yield_env( co_get_curr_thread_env() );
}
//本质就是调用上面的co_yield_env
void co_yield( stCoRoutine_t *co )
{
co_yield_env( co->env );
}
void save_stack_buffer(stCoRoutine_t* occupy_co)
{
///copy out
stStackMem_t* stack_mem = occupy_co->stack_mem;
int len = stack_mem->stack_bp - occupy_co->stack_sp;
if (occupy_co->save_buffer)
{
free(occupy_co->save_buffer), occupy_co->save_buffer = NULL;
}
occupy_co->save_buffer = (char*)malloc(len); //malloc buf;
occupy_co->save_size = len;
memcpy(occupy_co->save_buffer, occupy_co->stack_sp, len);
}
//切换运行的curr到pending_co运行
void co_swap(stCoRoutine_t* curr, stCoRoutine_t* pending_co)
{
stCoRoutineEnv_t* env = co_get_curr_thread_env();
//get curr stack sp
//这里申请了一个 char 类型的变量,这个变量的地址即为当前的 stack top
char c;
curr->stack_sp= &c;
if (!pending_co->cIsShareStack)
{
//如果不是共享栈的话,可以不用保存这两个指针
env->pending_co = NULL;
env->occupy_co = NULL;
}
else
{
env->pending_co = pending_co;
//get last occupy co on the same stack mem
stCoRoutine_t* occupy_co = pending_co->stack_mem->occupy_co;
//set pending co to occupy thest stack mem;
pending_co->stack_mem->occupy_co = pending_co;
env->occupy_co = occupy_co;
if (occupy_co && occupy_co != pending_co)
{
save_stack_buffer(occupy_co);
}
}
//swap context
//这里执行汇编代码,将两个 co 的 ctx 切换
coctx_swap(&(curr->ctx),&(pending_co->ctx) );
//stack buffer may be overwrite, so get again;
//这里已经切换到了pending co
stCoRoutineEnv_t* curr_env = co_get_curr_thread_env();
stCoRoutine_t* update_occupy_co = curr_env->occupy_co;
stCoRoutine_t* update_pending_co = curr_env->pending_co;
if (update_occupy_co && update_pending_co && update_occupy_co != update_pending_co)
{
//resume stack buffer
if (update_pending_co->save_buffer && update_pending_co->save_size > 0)
{
memcpy(update_pending_co->stack_sp, update_pending_co->save_buffer, update_pending_co->save_size);
}
}
}
//int poll(struct pollfd fds[], nfds_t nfds, int timeout);
// { fd,events,revents }
struct stPollItem_t ;
struct stPoll_t : public stTimeoutItem_t
{
struct pollfd *fds;
nfds_t nfds; // typedef unsigned long int nfds_t;
stPollItem_t *pPollItems;
int iAllEventDetach;
int iEpollFd;
int iRaiseCnt;
};
struct stPollItem_t : public stTimeoutItem_t
{
struct pollfd *pSelf;
stPoll_t *pPoll;
struct epoll_event stEvent;
};
/*
* EPOLLPRI POLLPRI // There is urgent data to read.
* EPOLLMSG POLLMSG
*
* POLLREMOVE
* POLLRDHUP
* POLLNVAL
*
* */
static uint32_t PollEvent2Epoll( short events )
{
uint32_t e = 0;
if( events & POLLIN ) e |= EPOLLIN;
if( events & POLLOUT ) e |= EPOLLOUT;
if( events & POLLHUP ) e |= EPOLLHUP;
if( events & POLLERR ) e |= EPOLLERR;
if( events & POLLRDNORM ) e |= EPOLLRDNORM;
if( events & POLLWRNORM ) e |= EPOLLWRNORM;
return e;
}
static short EpollEvent2Poll( uint32_t events )
{
short e = 0;
if( events & EPOLLIN ) e |= POLLIN;
if( events & EPOLLOUT ) e |= POLLOUT;
if( events & EPOLLHUP ) e |= POLLHUP;
if( events & EPOLLERR ) e |= POLLERR;
if( events & EPOLLRDNORM ) e |= POLLRDNORM;
if( events & EPOLLWRNORM ) e |= POLLWRNORM;
return e;
}
static __thread stCoRoutineEnv_t* gCoEnvPerThread = NULL;
//初始化当前的线程的env
void co_init_curr_thread_env()
{
//分配线程控制块
gCoEnvPerThread = (stCoRoutineEnv_t*)calloc( 1, sizeof(stCoRoutineEnv_t) );
stCoRoutineEnv_t *env = gCoEnvPerThread;
//初始化线程控制块参数
env->iCallStackSize = 0;
//初始化 mainco 的参数
struct stCoRoutine_t *self = co_create_env( env, NULL, NULL,NULL );
//在这里设置 mainco 的 cIsMain 是 1
self->cIsMain = 1;
env->pending_co = NULL;
env->occupy_co = NULL;
coctx_init( &self->ctx );
//mainco 指针放在pCallStack[0]处
env->pCallStack[ env->iCallStackSize++ ] = self;
stCoEpoll_t *ev = AllocEpoll();
SetEpoll( env,ev );
}
stCoRoutineEnv_t *co_get_curr_thread_env()
{
return gCoEnvPerThread;
}
void OnPollProcessEvent( stTimeoutItem_t * ap )
{
stCoRoutine_t *co = (stCoRoutine_t*)ap->pArg;
co_resume( co );
}
void OnPollPreparePfn( stTimeoutItem_t * ap,struct epoll_event &e,stTimeoutItemLink_t *active )
{
stPollItem_t *lp = (stPollItem_t *)ap;
lp->pSelf->revents = EpollEvent2Poll( e.events );
stPoll_t *pPoll = lp->pPoll;
pPoll->iRaiseCnt++;
if( !pPoll->iAllEventDetach )
{
pPoll->iAllEventDetach = 1;
RemoveFromLink<stTimeoutItem_t,stTimeoutItemLink_t>( pPoll );
AddTail( active,pPoll );
}
}
void co_eventloop( stCoEpoll_t *ctx,pfn_co_eventloop_t pfn,void *arg )
{
if( !ctx->result )
{
//如果 ctx 的 result 没有被初始化,那么初始化一手
ctx->result = co_epoll_res_alloc( stCoEpoll_t::_EPOLL_SIZE );
}
co_epoll_res *result = ctx->result;
for(;;)
{
//调用epolling_wait()等待IO就绪,设置timeout为1ms
int ret = co_epoll_wait( ctx->iEpollFd,result,stCoEpoll_t::_EPOLL_SIZE, 1 );
//代码执行到这里,可能是时间已经超时了,也可能是有 IO 请求过来了
//总之ret 中保存了返回的事件,result里面放了epoll 系统调用的结果
stTimeoutItemLink_t *active = (ctx->pstActiveList); //当前执行环境的pstActiveList队列,可能已经有活跃的待处理事件
stTimeoutItemLink_t *timeout = (ctx->pstTimeoutList); //临时链表
memset( timeout,0,sizeof(stTimeoutItemLink_t) );
for(int i=0;i<ret;i++)
{
//处理就绪的文件描述符
stTimeoutItem_t *item = (stTimeoutItem_t*)result->events[i].data.ptr;
if( item->pfnPrepare )
{
//如果用户设置了预处理回调函数,那么执行这个函数
item->pfnPrepare( item,result->events[i],active );
}
else
{
//如果用户没有注册回调函数,那么将其加入到active队列中
AddTail( active,item );
}
}
//从时间轮中取出所有的超时的事件,然后放入到timeout队列中
unsigned long long now = GetTickMS();
TakeAllTimeout( ctx->pTimeout,now,timeout );
stTimeoutItem_t *lp = timeout->head;
while( lp )
{
//遍历超时队列,将所有的事件的设置为true
//printf("raise timeout %p\n",lp);
lp->bTimeout = true;
lp = lp->pNext;
}
//将active和timeout队列合并到 active 链表中
Join<stTimeoutItem_t,stTimeoutItemLink_t>( active,timeout );
lp = active->head;
while( lp )
{
//遍历一手 active 和 timeout 合起来的链表
PopHead<stTimeoutItem_t,stTimeoutItemLink_t>( active );
if (lp->bTimeout && now < lp->ullExpireTime)
{
//如果过期了,但是ullExpireTime还没有到
//大概是处理在 libco 中没有超时事件,但是在原生 epoll_wait()中超时的事件?
int ret = AddTimeout(ctx->pTimeout, lp, now);
if (!ret)
{
lp->bTimeout = false;
lp = active->head;
continue;
}
}
if( lp->pfnProcess )
{
lp->pfnProcess( lp );
}
lp = active->head;
}
if( pfn )
{
if( -1 == pfn( arg ) )
{
break;
}
}
}
}
void OnCoroutineEvent( stTimeoutItem_t * ap )
{
stCoRoutine_t *co = (stCoRoutine_t*)ap->pArg;
co_resume( co );
}
//初始化 epolling 结构体
stCoEpoll_t *AllocEpoll()
{
stCoEpoll_t *ctx = (stCoEpoll_t*)calloc( 1,sizeof(stCoEpoll_t) );
ctx->iEpollFd = co_epoll_create( stCoEpoll_t::_EPOLL_SIZE );
ctx->pTimeout = AllocTimeout( 60 * 1000 );
ctx->pstActiveList = (stTimeoutItemLink_t*)calloc( 1,sizeof(stTimeoutItemLink_t) );
ctx->pstTimeoutList = (stTimeoutItemLink_t*)calloc( 1,sizeof(stTimeoutItemLink_t) );
return ctx;
}
void FreeEpoll( stCoEpoll_t *ctx )
{
if( ctx )
{
free( ctx->pstActiveList );
free( ctx->pstTimeoutList );
FreeTimeout( ctx->pTimeout );