-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloopNetGeneral.py
34 lines (25 loc) · 1.3 KB
/
loopNetGeneral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from pybrain.supervised.trainers import BackpropTrainer
from pybrain.structure import FeedForwardNetwork, LinearLayer, SigmoidLayer, FullConnection
from pybrain.structure.connections.connection import Connection
from pybrain.structure.connections.shared import MotherConnection, SharedFullConnection
from pybrain.structure import TanhLayer
from pybrain.structure.moduleslice import ModuleSlice
net = FeedForwardNetwork()
inputSize = 6
hiddenSize = 3
sliceSize = inputSize / hiddenSize
inputLayer = LinearLayer(inputSize)
net.addInputModule(inputLayer)
hiddenLayer = SigmoidLayer(hiddenSize)
net.addModule(hiddenLayer)
outputLayer = LinearLayer(1)
net.addOutputModule(outputLayer)
inputToHidden = MotherConnection(1, name = "inputToHidden")
hiddenToOutput = MotherConnection(1, name = "hiddenToOutput")
for i in range(0,hiddenSize):
inputSlice = ModuleSlice(inputLayer, outSliceFrom = i*sliceSize, outSliceTo = i*sliceSize+(sliceSize - 1))
hiddenSlice = ModuleSlice(hiddenLayer, inSliceFrom = i*sliceSize, inSliceTo = i*sliceSize+(sliceSize - 1), outSliceFrom = i, outSliceTo = i+1)
net.addConnection(SharedFullConnection(inputToHidden, inputSlice, hiddenSlice))
net.addConnection(SharedFullConnection(hiddenToOutput, hiddenSlice, outputLayer))
net.sortModules()
print(net.activate([i for i in range (0, inputSize)]))