forked from PASApipeline/PASApipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBHStats.pm
executable file
·235 lines (171 loc) · 3.97 KB
/
BHStats.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
package BHStats;
require Exporter;
our @ISA = qw (Exporter);
our @EXPORT = qw (binomial_probability_sum_k_to_n
binomial_probability_sum_k_to_0
binomial_probability
binomial_coefficient
factorial
stDev
stdErr
median
avg
CorrelationCoeff
geometric_mean
min
max
sum
);
use strict;
sub binomial_probability_sum_k_to_n {
my ($n,$k,$p) = @_;
my $sum = 0;
for (my $i = $k; $i <= $n; $i++) {
my $binProb = binomial_probability($n,$i,$p);
$sum += $binProb;
}
return ($sum);
}
sub binomial_probability_sum_k_to_0 {
my ($n,$k,$p) = @_;
my $sum = 0;
for (my $i = $k; $i >= 0; $i--) {
my $binProb = binomial_probability($n,$i,$p);
$sum += $binProb;
}
return ($sum);
}
sub binomial_probability {
my ($n_observations, $k_successes, $p_probability) = @_;
my ($n, $k, $p) = ($n_observations, $k_successes, $p_probability);
### Given B(n,p), find P(X=k)
my $binomial_prob = binomial_coefficient($n,$k) * ($p**$k) * (1-$p)**($n-$k);
return ($binomial_prob);
}
sub binomial_coefficient {
my ($n_things, $k_at_a_time) = @_;
my $number_of_k_arrangements = (factorial($n_things)) / ( factorial($k_at_a_time) * factorial($n_things-$k_at_a_time) );
return ($number_of_k_arrangements);
}
sub factorial {
my $x = shift;
$x = int($x);
my $factorial = 1;
while ($x > 1) {
$factorial *= $x;
$x--;
}
return ($factorial);
}
sub stDev {
# standard deviation calculation
my @nums = @_;
@nums = sort {$a<=>$b} @nums;
my $avg = avg(@nums);
my $count_eles = scalar(@nums);
## sum up the sqr of diff from avg
my $sum_avg_diffs_sqr = 0;
foreach my $num (@nums) {
my $diff = $num - $avg;
my $sqr = $diff**2;
$sum_avg_diffs_sqr += $sqr;
}
my $stdev = sqrt ($sum_avg_diffs_sqr/($count_eles-1));
return ($stdev);
}
####
sub stdErr {
my @vals = @_;
my $stdev = &stDev(@vals);
my $num_vals = scalar(@vals);
my $stdErr = $stdev / sqrt($num_vals);
return($stdErr);
}
sub median {
my @nums = @_;
@nums = sort {$a<=>$b} @nums;
my $count = scalar (@nums);
if ($count %2 == 0) {
## even number:
my $half = $count / 2;
return (avg ($nums[$half-1], $nums[$half]));
}
else {
## odd number. Return middle value
my $middle_index = int($count/2);
return ($nums[$middle_index]);
}
}
sub avg {
my @nums = @_;
my $total = $#nums + 1;
my $sum = 0;
foreach my $num (@nums) {
$sum += $num;
}
my $avg = $sum/$total;
return ($avg);
}
sub CorrelationCoeff {
my ($x_aref, $y_aref) = @_;
my @x = @$x_aref;
my @y = @$y_aref;
my $total = $#x + 1;
my $avg_x = avg(@x);
my $avg_y = avg(@y);
my $stdev_x = stDev(@x);
my $stdev_y = stDev(@y);
# sum part of equation
my $summation = 0;
for (my $i = 0; $i < $total; $i++) {
my $x_val = $x[$i];
my $y_val = $y[$i];
my $x_part = ($x_val - $avg_x)/$stdev_x;
my $y_part = ($y_val - $avg_y)/$stdev_y;
$summation += ($x_part * $y_part);
}
my $cor = (1/($total-1)) * $summation;
return ($cor);
}
####
sub geometric_mean {
my @entries = @_;
my $num_entries = scalar (@entries);
unless ($num_entries) {
return (undef);
}
## All entries must be > 0
my $logsum = 0;
foreach my $entry (@entries) {
unless ($entry > 0) {
return (undef);
}
$logsum += log ($entry);
}
my $geo_mean = exp ( (1/$num_entries) * $logsum);
return ($geo_mean);
}
####
sub min {
my @vals = @_;
@vals = sort {$a<=>$b} @vals;
my $min_val = shift @vals;
return ($min_val);
}
####
sub max {
my @vals = @_;
@vals = sort {$a<=>$b} @vals;
my $max_val = pop @vals;
return ($max_val);
}
####
sub sum {
my @vals = @_;
my $x = 0;
foreach my $val (@vals) {
$x += $val;
}
return ($x);
}
1; #EOM