forked from PASApipeline/PASApipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGenome_based_cDNA_assembler.pm
executable file
·630 lines (488 loc) · 18.8 KB
/
Genome_based_cDNA_assembler.pm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
#!/usr/local/bin/perl
package main;
our $SEE;
package CDNA::Genome_based_cDNA_assembler;
=head1 NAME
CDNA::Genome_based_cdna_assembler
=cut
=head1 DESCRIPTION
This module is used to assemble compatible cDNA alignments. The algorithm is as follows:
must describe this here.
=cut
use strict;
use CDNA::CDNA_alignment;
use Data::Dumper;
my $DELIMETER = "$;,";
my $FUZZLENGTH = 20;
=item new()
=over 4
B<Description:> instantiates a new cDNA assembler obj.
B<Parameters:> $sequence_sref
$sequence_sref is a reference to a scalar containing the genomic sequence string.
B<Returns:> $obj_href
$obj_href is the object reference newly instantiated by this new method.
=back
=cut
sub new () {
my $package_name = shift;
my $self = {};
bless ($self, $package_name);
$self->_init(@_);
return ($self);
}
sub _init {
my $self = shift;
my ($sequence_ref) = @_;
$self->{incoming_alignments} = []; #these are the alignments to be assembled.
$self->{assemblies} = []; #contains list of all singletons and assemblies.
$self->{sequence_ref} = $sequence_ref;
$self->{fuzzlength} = $FUZZLENGTH; #default setting.
}
=item assemble_alignments()
=over 4
B<DESCRIPTION:> assembles a series of cDNA aligmnments into one or more cDNA assemblies
B<Parameters:> @alignments
@alignments is an array of CDNA::CDNA_alignment objects
B<Returns:> none.
=back
=cut
sub assemble_alignments {
my $self = shift;
my @alignments = @_;
@alignments = reverse sort {$a->{length}<=>$b->{length}} @alignments; #keep in order of decreasing alignment length.
$self->{incoming_alignments} = [@alignments];
#return;
## Algorithm: given cdna, merge with rest of cDNAs iteratively until merging complete.
## find unmerged cDNA, merge it if possible with all individual cdna entries.
## continue until all cDNAs have merged products, if possible.
my $num_alignments = $#alignments + 1;
for (my $i = 0; $i < $num_alignments; $i++) {
my $seed_alignment = $alignments[$i];
if ($seed_alignment->{merged}) {next;}
print "Checking seed $i\n" if $SEE;
my $merged_alignment = $seed_alignment; #initialize to seed alignment.
my $merged_flag = 1;
my $round = 0;
while ($merged_flag) {
$merged_flag = 0;
$round++;
print "Merging round $round\n" if $SEE;
for (my $j=0; $j < $num_alignments; $j++) {
if ($i == $j) {next;} #no self comparisons.
my $other_alignment = $alignments[$j];
if ($self->already_contains($merged_alignment, $other_alignment)) { next;}
if ($self->can_merge($merged_alignment, $other_alignment)) {
my $initial_merged_fli_status = $merged_alignment->is_fli();
my $initial_merged_orient = $merged_alignment->get_orientation();
$merged_alignment = $self->merge_alignments($merged_alignment, $other_alignment);
$alignments[$i]->{merged} = 1; #set seed alignment merge flag.
$alignments[$j]->{merged} = 1; #set other alignment merge flag.
$merged_flag = 1; #indicates something actually merged this round.
$merged_alignment->remap_cdna_segment_coords();
print "merged: " . $merged_alignment->toToken() . "\n" if $SEE;
}
}
}
push (@{$self->{assemblies}}, $merged_alignment); #either an assembled product, or something that won't ever merge.
}
}
=item get_assemblies()
=over 4
B<Description:> returns all the alignment assemblies resulting from the assembly procedure.
B<Parameters:> none.
B<Returns:> @assemblies
@assemblies is an array of CDNA::CDNA_alignment objects.
use the get_acc() method of the alignment object to retrieve all the accessions of the cDNAs that were merged into the assembly.
=back
=cut
sub get_assemblies {
my $self = shift;
return (@{$self->{assemblies}});
}
# private method. Determines if two alignments are compatible with one another.
sub can_merge () {
my $self = shift;
my ($a1, $a2) = @_;
print "Checking to see if can merge: " . $a1->get_acc() . ", " . $a2->get_acc() . "\n" if $::SEE;
## See if the coord spans overlap
my ($a1_lend, $a1_rend) = $a1->get_coords();
my ($a2_lend, $a2_rend) = $a2->get_coords();
unless (&overlap($a1_lend, $a1_rend, $a2_lend, $a2_rend)) {
print "failed merge: No overlap between alignment spans. ($a1_lend, $a1_rend) vs. ($a2_lend, $a2_rend)\n" if $::SEE;
return(0);
}
## Make sure the spliced orientation is equivalent if appropriate
my $a1_num_segs = $a1->get_num_segments();
my $a2_num_segs = $a2->get_num_segments();
my $a1_spliced_orientation = $a1->get_spliced_orientation();
my $a2_spliced_orientation = $a2->get_spliced_orientation();
my $a1_is_fli = $a1->is_fli();
my $a2_is_fli = $a2->is_fli();
my $fuzzlength = $self->{fuzzlength};
if ($a1_num_segs > 1 && $a2_num_segs > 1) { #if more than one segment, then spliced orientation is relevant.
if ($a1_spliced_orientation ne $a2_spliced_orientation) {
print "failed merge: $a1_num_segs segments vs. $a2_num_segs and opposite spliced orientations.\n" if $::SEE;
return (0);
}
}
if ($a1_is_fli && $a2_is_fli && ($a1_spliced_orientation ne $a2_spliced_orientation)) { #fli's must have same orient.
print "failed merge: (a1-fli: $a1_is_fli, a2-fli: $a2_is_fli) and opposite orientations.\n" if $SEE;
return (0);
}
## Check all overlapping segments to ensure non-conflicting segments.
my @a1_segments = $a1->get_alignment_segments();
my @a2_segments = $a2->get_alignment_segments();
## align segment orders between a1 and a2
my ($starting_a1, $starting_a2);
for (my $i = 0; $i <= $#a1_segments; $i++) {
my $a1_seg = $a1_segments[$i];
my ($a1_lend, $a1_rend) = $a1_seg->get_coords();
for (my $j = 0; $j <= $#a2_segments; $j++) {
my $a2_seg = $a2_segments[$j];
my ($a2_lend, $a2_rend) = $a2_seg->get_coords();
if (&overlap($a1_lend, $a1_rend, $a2_lend, $a2_rend)) {
$starting_a1 = $i;
$starting_a2 = $j;
last;
}
}
if (defined ($starting_a1) && defined ($starting_a2)) {
last;
}
}
unless (defined ($starting_a1) && defined ($starting_a2)) {
print "failed merge: can't align two segments between overlapping alignments.\n" if $::SEE;
return (0);
}
unless ($starting_a1 == 0 || $starting_a2 == 0) {
print "failed merge: segment alignment doesn't begin at either cDNA terminus.\n" if $::SEE;
return (0);
}
while ($starting_a1 <= $#a1_segments && $starting_a2 <= $#a2_segments) {
my $a1_segment = $a1_segments[$starting_a1];
my $a2_segment = $a2_segments[$starting_a2];
my ($a1_lend, $a1_rend) = $a1_segment->get_coords();
my ($a2_lend, $a2_rend) = $a2_segment->get_coords();
if (&overlap($a1_lend, $a1_rend, $a2_lend, $a2_rend)) {
## See if have splice sites, do they exist and are they identical
if ($a1_segment->has_left_splice_junction() || $a2_segment->has_left_splice_junction()) {
if ($a1_segment->has_left_splice_junction() && $a2_segment->has_left_splice_junction() && $a1_lend != $a2_lend) {
print "failed merge:\tboth left splice, but unequal coords: L1 ($a1_lend), L2 ($a2_lend)\n" if $::SEE;
return (0);
} elsif ($a1_segment->has_left_splice_junction() && ($a2_lend + $fuzzlength < $a1_lend)) { #alignment extends beyond a splice junction.
print "failed merge:\tL1 left splice, L2 ($a2_lend) < L1 ($a1_lend)\n" if $::SEE;
return (0);
} elsif ($a2_segment->has_left_splice_junction() && ($a1_lend + $fuzzlength < $a2_lend)) {
print "failed merge:\tL2 left splice, L1 ($a1_lend) < L2 ($a2_lend)\n" if $::SEE;
return (0);
}
}
if ($a1_segment->has_right_splice_junction() || $a2_segment->has_right_splice_junction()) {
if ($a1_segment->has_right_splice_junction() && $a2_segment->has_right_splice_junction() && $a1_rend != $a2_rend) {
print "failed merge:\tboth right splice, but unequal coords: R1($a1_rend), R2($a2_rend)\n" if $::SEE;
return (0);
} elsif ($a1_segment->has_right_splice_junction() && ($a2_rend - $fuzzlength > $a1_rend)) {
print "failed merge:\tR1 right splice, R2($a2_rend) > R1 ($a1_rend)\n" if $::SEE;
return (0);
} elsif ($a2_segment->has_right_splice_junction() && ($a1_rend - $fuzzlength > $a2_rend)) {
print "failed merge:\tR2 right splice, R1 ($a1_rend) > R2 ($a2_rend)\n" if $::SEE;
return (0);
}
}
} else {
print "failed merge: Two ordered segments don't overlap. ($a1_lend, $a1_rend) , ($a2_lend, $a2_rend)\n" if $::SEE;
return (0);
}
$starting_a1++;
$starting_a2++;
}
## Passed all tests
print "Merge tests PASSED.\n" if $::SEE;
return (1);
}
# private method
# merges two alignment objects together into an assembly.
sub merge_alignments () {
my ($self, $a1, $a2) = @_;
print "Merging <" . $a1->get_acc() . ">, <" . $a2->get_acc() . ">\n" if $::SEE;
my $a1_fli = $a1->is_fli();
my $a2_fli = $a2->is_fli();
print "a1_fli: $a1_fli, a2_fli: $a2_fli\n" if $SEE;
## Determine fli status for merged product.
my $merged_fli_status = ($a1_fli || $a2_fli);
my $merged_orientation = $self->determine_merged_orientation($a1, $a2);
#get a1 segment cooridnates;
my %leftsplicecoords; #preferrentially use splice coords over Fuzzlength extensions.
my %rightsplicecoords;
my %a1_coords;
my @a1_segments = $a1->get_alignment_segments();
foreach my $seg (@a1_segments) {
my ($lend, $rend) = $seg->get_coords();
$a1_coords{$lend} = $rend;
if ($seg->has_left_splice_junction()) {
$leftsplicecoords{$lend} = 1;
}
if ($seg->has_right_splice_junction()) {
$rightsplicecoords{$rend} = 1;
}
}
# get a2 segment coordinates:
my %a2_coords;
my @a2_segments = $a2->get_alignment_segments();
foreach my $seg (@a2_segments) {
my ($lend, $rend) = $seg->get_coords();
$a2_coords{$lend} = $rend;
if ($seg->has_left_splice_junction()) {
$leftsplicecoords{$lend} = 1;
}
if ($seg->has_right_splice_junction()) {
$rightsplicecoords{$rend} = 1;
}
}
my %merged_coords;
#print "Coord dumps:\n" . Dumper (\%a1_coords) . Dumper (\%a2_coords) . "\n";
#print "\n\nBEGIN\n";
## merge the overlapping coordinate sets between a1 and a2 alignments.
foreach my $a1_lend (keys %a1_coords) {
my $a1_rend = $a1_coords{$a1_lend};
my ($merged_lend, $merged_rend);
foreach my $a2_lend (keys %a2_coords) {
my $a2_rend = $a2_coords{$a2_lend};
if (&overlap($a1_lend, $a1_rend, $a2_lend, $a2_rend)) { #overlap
## Determine merged lend;
if ($leftsplicecoords{$a1_lend}) {
$merged_lend = $a1_lend;
} elsif ($leftsplicecoords{$a2_lend}) {
$merged_lend = $a2_lend;
} else {
$merged_lend = min ($a1_lend, $a2_lend);
}
# Determine merged rend
if ($rightsplicecoords{$a1_rend}) {
$merged_rend = $a1_rend;
} elsif ($rightsplicecoords{$a2_rend}) {
$merged_rend = $a2_rend;
} else {
$merged_rend = max ($a1_rend, $a2_rend);
}
last;
}
}
if ($merged_lend && $merged_rend) {
#print "Adding overlapped \$merged_coords{$merged_lend} = $merged_rend\n";
$merged_coords{$merged_lend} = $merged_rend;
} else { #must not have been any overlap; keep a1 coordset
#print "Keeping a1 coords: \$merged_coords{$a1_lend} = $a1_rend\n";
$merged_coords{$a1_lend} = $a1_rend;
}
}
#print "adding unconsumed a2 coords:\n";
## add non-overlapping a2-segments
foreach my $a2_lend (keys %a2_coords) {
my $overlap = 0;
my $a2_rend = $a2_coords{$a2_lend};
foreach my $m_lend (keys %merged_coords) {
my $m_rend = $merged_coords{$m_lend};
if (&overlap($a2_lend, $a2_rend, $m_lend, $m_rend)) {
$overlap = 1;
last;
}
}
if (!$overlap) {
#print "Consuming a2 non-overlapping coords.\n";
$merged_coords{$a2_lend} = $a2_rend; #added a2 non-overlapping coordset
} else {
#print "coords overlapped, not consuming.\n";
}
}
print Dumper (\%merged_coords) if $::SEE;
## Create a new alignment based on a1 and a2
my @alignment_segments;
my $merged_length = 0;
foreach my $end5 (keys %merged_coords) {
my $end3 = $merged_coords{$end5};
my $alignment_seg = new CDNA::Alignment_segment($end5, $end3);
push (@alignment_segments, $alignment_seg);
$merged_length += abs ($end3 - $end5) + 1;
}
my $new_alignment = new CDNA::CDNA_alignment($merged_length, \@alignment_segments, $self->{sequence_ref});
my $new_acc = $self->merge_accs($a1->get_acc(), $a2->get_acc());
$new_alignment->set_acc($new_acc);
$new_alignment->set_fli_status($merged_fli_status);
$new_alignment->force_spliced_validation($merged_orientation);
#print "END.\n\n";
return ($new_alignment);
}
#private method
# returns the minimum of an array of numerical values.
sub min {
my @x = @_;
@x = sort {$a<=>$b} @x;
my $y = shift @x;
return ($y);
}
#private method
# returns the maximum of an array of numerical values.
sub max {
my @x = @_;
@x = sort {$a<=>$b} @x;
my $y = pop @x;
return ($y);
}
#private method
# returns true/false, determines whether two coordinate sets overlap each other.
sub overlap {
my ($a1_lend, $a1_rend, $a2_lend, $a2_rend) = @_;
#print "Checking overlap @_\t";
if ($a2_rend >= $a1_lend && $a2_lend <= $a1_rend) { #overlap
#print "YES\n";
return (1);
} else {
#print "NO\n";
return (0);
}
}
=item toAlignIllustration()
=over 4
B<Description:> illustrates the individual cDNAs to be assembled along with the final products.
B<Parameters:> $max_line_chars(optional)
$max_line_chars is an integer representing the maximum number of characters in a single line of output to the terminal. The default is 100.
B<Returns:> $alignment_illustration_text
$alignment_illustration_text is a string containing a paragraph of text which illustrates the alignments and assemblies. An example is below:
---> <--> <-----> <---> <---------------- (+)gi|1199466
---> <--> <-----> <---> <------------ (+)gi|1209702
----> <--> <---- (+)AV827070
----> <--> <--- (+)AV828861
----> <--> <--- (+)AV830936
---> <--> <- (+)H36350
ASSEMBLIES: (1)
----> <--> <-----> <---> <---------------- (+) gi|1199466, gi|1209702, AV827070, AV828861, AV830936, H36350
=back
=cut
sub toAlignIllustration () {
my $self = shift;
my $max_line_chars = shift;
$max_line_chars = ($max_line_chars) ? $max_line_chars : 100; #if not specified, 100 chars / line is default.
## Get minimum coord for relative positioning.
my @coords;
my @alignments = @{$self->{incoming_alignments}};
foreach my $alignment (@alignments) {
my @c = $alignment->get_coords();
push (@coords, @c);
}
@coords = sort {$a<=>$b} @coords;
print "coords: @coords\n" if $::SEE;
my $min_coord = shift @coords;
my $max_coord = pop @coords;
my $rel_max = $max_coord - $min_coord;
my $alignment_text = "";
## print each alignment followed by assemblies:
my $num_alignments = $#alignments + 1;
$alignment_text .= "Individual Alignments: ($num_alignments)\n";
my $i = 0;
foreach my $alignment (@alignments) {
$alignment_text .= (sprintf ("%3d ", $i)) . $alignment->toAlignIllustration($min_coord, $rel_max, $max_line_chars) . "\n";
$i++;
}
my @assemblies = @{$self->{assemblies}};
my $num_assemblies = $#assemblies + 1;
$alignment_text .= "\n\nASSEMBLIES: ($num_assemblies)\n";
foreach my $assembly (@assemblies) {
$alignment_text .= " " . $assembly->toAlignIllustration($min_coord, $rel_max, $max_line_chars) . "\n";
}
return ($alignment_text);
}
=over 4
=item set_fuzzlength()
B<Description:> Sets the fuzzlength parameter.
B<Parameters:> int
B<Returns:> none.
The fuzzlength is the length allowed to be fuzzy at the terminus of all alignments when compared to overlapping exons containining nearby splice sites.
=back
=cut
sub set_fuzzlength {
my $self = shift;
my $fuzzlength = shift;
$self->{fuzzlength} = $fuzzlength;
}
#private method
# determines if two assemblies have the same accessions.
sub composition_same () {
my ($name1, $name2) = @_;
if ($name1 eq $name2) {
return (1);
} else {
return (0);
}
}
#private method
# creates a new name based on the accessions composing two assemblies.
sub merge_accs () {
my $self = shift;
my @names = @_;
my @nameaccs;
foreach my $name (@names) {
my @nameacclist = split (/$DELIMETER/, $name);
push (@nameaccs, @nameacclist);
}
my %unique;
foreach my $acc (@nameaccs) {
$unique{$acc} = 1;
}
my @accs = sort {$a cmp $b} keys %unique;
my $combo = join ($DELIMETER, @accs);
return ($combo);
}
#private method
# checks to see if an assembly already contains all the accessions built into a second assembly.
sub already_contains () {
## Checks to see if a1 contains all accessions of a2
my $self = shift;
my ($a1, $a2) = @_;
my $a1_acc = $a1->get_acc();
my $a2_acc = $a2->get_acc();
my @a1_accs = split (/$DELIMETER/, $a1_acc);
my @a2_accs = split (/$DELIMETER/, $a2_acc);
my %a1_acc_hash;
foreach my $acc (@a1_accs) {
$a1_acc_hash{$acc} = 1;
}
my %a2_acc_hash;
foreach my $acc (@a2_accs) {
$a2_acc_hash{$acc} = 1;
}
foreach my $acc (keys %a2_acc_hash) {
unless ($a1_acc_hash{$acc}) {
return (0);
}
}
## if still here, then must have all a2 accs in a1.
return (1);
}
#private
sub determine_merged_orientation {
my ($self, $a1, $a2) = @_;
## Determine the orientation of the merged product.
my $num_a1_segments = $a1->get_num_segments();
my $num_a2_segments = $a2->get_num_segments();
my $a1_spliced_orientation = $a1->get_spliced_orientation();
my $a2_spliced_orientation = $a2->get_spliced_orientation();
print "a1_spliced_orient: $a1_spliced_orientation, a2_spliced_orient: $a2_spliced_orientation\n" if $SEE;
my $merged_orientation = '+'; #initialize to a default.
if ($a1_spliced_orientation eq $a2_spliced_orientation) {
$merged_orientation = $a1_spliced_orientation;
print "Same spliced orientation: $merged_orientation\n" if $SEE;
} elsif ($a1->is_fli() || $a2->is_fli()) {
$merged_orientation = ($a1->is_fli()) ? $a1_spliced_orientation : $a2_spliced_orientation;
print "a1 is fli, using a1 orient: $merged_orientation\n" if ($a1->is_fli() && $SEE);
print "a2 is fli, using a2 orient: $merged_orientation\n" if ($a2->is_fli() && $SEE);
} elsif ($num_a1_segments > 1 || $num_a2_segments > 1) {
$merged_orientation = ($num_a1_segments > 1) ? $a1_spliced_orientation : $a2_spliced_orientation;
print "a1 has multiple segments, using a1 orient: $merged_orientation\n" if ($num_a1_segments > 1 && $SEE);
print "a2 has multiple segments, using a2 orient: $merged_orientation\n" if ($num_a2_segments > 1 && $SEE);
} else {
print "Can't predict the orientation of the merged alignments ($a1_spliced_orientation vs. $a2_spliced_orientation). Using default '+'\n" if $SEE;
}
return ($merged_orientation);
}
1; #EOM