forked from ejawany95/mmbifpn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbifpn.py
83 lines (66 loc) · 2.51 KB
/
bifpn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import torch
from torch import nn
class conv_layer(nn.Module):
def __init__(self, in_ch, out_ch):
super(conv_layer,self).__init__()
self.convlayer = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self,x):
x = self.convlayer(x)
return x
class BiFPNUnit(nn.Module):
def __init__(self, n=1, channels=128):
super(BiFPNUnit, self).__init__()
self.conv21 = conv_layer(6 * channels, 2 * channels)
self.conv31 = conv_layer(12 * channels, 4 * channels)
self.conv12 = conv_layer(3 * channels, 1 * channels)
self.conv22 = conv_layer(5 * channels, 2 * channels)
self.conv32 = conv_layer(10 * channels, 4 * channels)
self.conv42 = conv_layer(12 * channels, 8 * channels)
self.upsample12 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.upsample21 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.upsample31 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
self.downsample22 = nn.MaxPool2d(kernel_size=2)
self.downsample32 = nn.MaxPool2d(kernel_size=2)
self.downsample42 = nn.MaxPool2d(kernel_size=2)
def forward(self, x1, x2, x3, x4):
x31 = torch.cat([x3, self.upsample31(x4)], dim=1)
# print('x31')
# print(x31.shape)
x31 = self.conv31(x31)
# print('x31')
# print(x31.shape)
x21 = torch.cat([x2, self.upsample21(x31)], dim=1)
# print('x21')
# print(x21.shape)
x21 = self.conv21(x21)
# print('x21')
# print(x21.shape)
x12 = torch.cat([x1, self.upsample12(x21)], dim=1)
# print('x12')
# print(x12.shape)
x12 = self.conv12(x12)
# print('x12')
# print(x12.shape)
x22 = torch.cat([x2, x21, self.downsample22(x12)], dim=1)
# print('x22')
# print(x22.shape)
x22 = self.conv22(x22)
# print('x22')
# print(x22.shape)
x32 = torch.cat([x3, x31, self.downsample32(x22)], dim=1)
# print('x32')
# print(x32.shape)
x32 = self.conv32(x32)
# print('x32')
# print(x32.shape)
x42 = torch.cat([x4, self.downsample42(x32)], dim=1)
# print('x42')
# print(x42.shape)
x42 = self.conv42(x42)
# print('x42')
# print(x42.shape)
return x12, x22, x32, x42