This repository has been archived by the owner on May 6, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathSpMV.cpp
298 lines (270 loc) · 7.98 KB
/
SpMV.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/**
Copyright (c) 2015, Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of the Intel Corporation nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include "CSR.hpp"
using namespace std;
namespace SpMP
{
template<class T>
static void SpMV_(
int m,
T *w,
T alpha,
const int *rowptr, const int *colidx, const T* values,
const T *x,
T beta,
const T *y,
T gamma)
{
assert(w != x);
int base = rowptr[0];
rowptr -= base;
colidx -= base;
if (values) values -= base;
w -= base;
x -= base;
y -= base;
//#define MEASURE_LOAD_BALANCE
#ifdef MEASURE_LOAD_BALANCE
double barrierTimes[omp_get_max_threads()];
double tBegin = omp_get_wtime();
#endif
#pragma omp parallel
{
int iBegin, iEnd;
getLoadBalancedPartition(&iBegin, &iEnd, rowptr + base, m);
iBegin += base;
iEnd += base;
if (1 == alpha && 0 == beta && 0 == gamma) {
if (values) {
for (int i = iBegin; i < iEnd; ++i) {
T sum = 0;
for (int j = rowptr[i]; j < rowptr[i + 1]; ++j) {
sum += values[j]*x[colidx[j]];
}
w[i] = sum;
}
}
else {
// pattern-only matrix: assume all non-zero values are 1
for (int i = iBegin; i < iEnd; ++i) {
T sum = 0;
for (int j = rowptr[i]; j < rowptr[i + 1]; ++j) {
sum += x[colidx[j]];
}
w[i] = sum;
}
}
}
else if (-1 == alpha && 1 == beta && 0 == gamma) {
if (values) {
for (int i = iBegin; i < iEnd; ++i) {
T sum = y[i];
for (int j = rowptr[i]; j < rowptr[i + 1]; ++j) {
sum -= values[j]*x[colidx[j]];
}
w[i] = sum;
}
}
else {
for (int i = iBegin; i < iEnd; ++i) {
T sum = y[i];
for (int j = rowptr[i]; j < rowptr[i + 1]; ++j) {
sum -= x[colidx[j]];
}
w[i] = sum;
}
}
}
else {
if (values) {
for (int i = iBegin; i < iEnd; ++i) {
T sum = 0;
for (int j = rowptr[i]; j < rowptr[i + 1]; ++j) {
sum += values[j]*x[colidx[j]];
}
w[i] = alpha*sum + beta*y[i] + gamma;
}
}
else {
// pattern-only matrix: assume all non-zero values are 1
for (int i = iBegin; i < iEnd; ++i) {
T sum = 0;
for (int j = rowptr[i]; j < rowptr[i + 1]; ++j) {
sum += x[colidx[j]];
}
w[i] = alpha*sum + beta*y[i] + gamma;
}
}
}
#ifdef MEASURE_LOAD_BALANCE
double t = omp_get_wtime();
int tid = omp_get_thread_num();
int nthreads = omp_get_num_threads();
#pragma omp barrier
barrierTimes[tid] = omp_get_wtime() - t;
#pragma omp barrier
#pragma omp master
{
double tEnd = omp_get_wtime();
double barrierTimeSum = 0;
for (int i = 0; i < nthreads; ++i) {
barrierTimeSum += barrierTimes[i];
}
printf("%f load imbalance = %f\n", tEnd - tBegin, barrierTimeSum/(tEnd - tBegin)/nthreads);
}
#undef MEASURE_LOAD_BALANCE
#endif // MEASURE_LOAD_BALANCE
} // omp parallel
}
void CSR::multiplyWithVector(
double *w,
double alpha, const double *x, double beta, const double *y, double gamma)
const
{
double *tmp_x = (double *)x;
// if x and w point to the same array, copy x to a temporary buffer
// in order to avoid possible race condition in SpMV_
if (w == x) {
tmp_x = MALLOC(double, m);
#pragma omp parallel for
for (int i=0; i<m; i++) {
tmp_x[i] = x[i];
}
}
SpMV_<double>(m, w, alpha, rowptr, colidx, values, tmp_x, beta, y, gamma);
if (w == x) {
FREE(tmp_x);
}
}
void CSR::multiplyWithVector(double *w, const double *x) const
{
return multiplyWithVector(w, 1, x, 0, w, 0);
}
template<class T>
static void SpMDM_(
int m,
int k, // width of W, X, and Y
T *W, int wRowStride, int wColumnStride,
T alpha,
const int *rowptr, const int *colidx, const T* values,
const T *X, int xRowStride, int xColumnStride,
T beta,
const T *Y, int yRowStride, int yColumnStride,
T gamma)
{
int base = rowptr[0];
rowptr -= base;
colidx -= base;
values -= base;
W -= base;
X -= base;
Y -= base;
//#define MEASURE_LOAD_BALANCE
#ifdef MEASURE_LOAD_BALANCE
double barrierTimes[omp_get_max_threads()];
double tBegin = omp_get_wtime();
#endif
#pragma omp parallel
{
int iBegin, iEnd;
getLoadBalancedPartition(&iBegin, &iEnd, rowptr + base, m);
iBegin += base;
iEnd += base;
T sum[k];
if (1 == alpha && 0 == beta && 0 == gamma && 1 == wRowStride && 1 == xRowStride && 1 == yRowStride) {
for (int i1 = iBegin; i1 < iEnd; ++i1) {
for (int i3 = 0; i3 < k; ++i3) {
sum[i3] = 0;
}
for (int i2 = rowptr[i1]; i2 < rowptr[i1 + 1]; ++i2) {
for (int i3 = 0; i3 < k; ++i3) {
sum[i3] += values[i2]*X[colidx[i2] + i3*xColumnStride];
}
}
for (int i3 = 0; i3 < k; ++i3) {
W[i1 + i3*wColumnStride] = sum[i3];
}
}
}
else {
for (int i1 = iBegin; i1 < iEnd; ++i1) {
for (int i3 = 0; i3 < k; ++i3) {
sum[i3] = 0;
}
for (int i2 = rowptr[i1]; i2 < rowptr[i1 + 1]; ++i2) {
for (int i3 = 0; i3 < k; ++i3) {
sum[i3] += values[i2]*X[colidx[i2]*xRowStride + i3*xColumnStride];
}
}
for (int i3 = 0; i3 < k; ++i3) {
W[i1*wRowStride + i3*wColumnStride] =
alpha*sum[i3] + beta*Y[i1*yRowStride + i3*yColumnStride] + gamma;
}
}
}
#ifdef MEASURE_LOAD_BALANCE
double t = omp_get_wtime();
#pragma omp barrier
barrierTimes[tid] = omp_get_wtime() - t;
#pragma omp barrier
#pragma omp master
{
double tEnd = omp_get_wtime();
double barrierTimeSum = 0;
for (int i = 0; i < nthreads; ++i) {
barrierTimeSum += barrierTimes[i];
}
printf("%f load imbalance = %f\n", tEnd - tBegin, barrierTimeSum/(tEnd - tBegin)/nthreads);
}
#undef MEASURE_LOAD_BALANCE
#endif // MEASURE_LOAD_BALANCE
} // omp parallel
}
void CSR::multiplyWithDenseMatrix(
double *W, int k, int wRowStride, int wColumnStride,
double alpha,
const double *X, int xRowStride, int xColumnStride,
double beta, const double *Y, int yRowStride, int yColumnStride,
double gamma) const
{
SpMDM_<double>(
m, k,
W, wRowStride, wColumnStride,
alpha, rowptr, colidx, values,
X, xRowStride, xColumnStride,
beta,
Y, yRowStride, yColumnStride,
gamma);
}
void CSR::multiplyWithDenseMatrix(double *W, int k, const double *X) const
{
return multiplyWithDenseMatrix(
W, k, 1, m,
1,
X, 1, n,
0, W, 1, m,
0);
}
} // namespace SpMP