-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLexer.swift
591 lines (505 loc) · 19.4 KB
/
Lexer.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
//
// Lexer.swift
// Author: Alexey Komnin
//
import Foundation
extension ASCII {
func isValidIdentifierBody() -> Bool {
return isCharacter() || isDigit() || self == .DOL || self == .USCR
}
func isValidOperatorBody() -> Bool {
switch self {
case .BSLSH, .EQ, .MNS, .PLS, .STAR, .PERC, .LT,
.GT, .EMARK, .AMP, .VL, .CAR, .TLD, .DOT,
.QMARK: // /=-+*%<>!&|^~.?
return true
default:
return false
}
}
}
// I would start with definition of the Lexer. It must hold the buffer - a content string, cursor to the current position in that buffer, and NextToken for lookahead peeking. So, it's the minimal definition, I assume.
public class Lexer {
private var NextToken: Token
private var Cursor: DataCursor
// Next step is to define a simple initializer. Note that we must condume the first pack of characters due to initialization and place valid token into NextToken property.
public init(content: Data) {
Cursor = DataCursor(content: content)
NextToken = .NUM_TOKENS
// lexImpl() routine would be our main lexer loop followin the original implementation in Lexer.cpp.
lexImpl()
}
// Also, we can define lex() and peekNextToken() routines - API for future Parser.
public func lex(Result: inout Token) {
Result = NextToken
if Result != .EOF {
lexImpl()
}
}
public func peekNextToken() -> Token {
return NextToken
}
// Ok. Preparation is over. We proceed with implementation of the main lexer loop, which is just a big switch statement.
private func lexImpl() {
// It consist of:
// 0. Prologue
while !Cursor.atEnd() {
switch Cursor.consume() {
// 1. consume all whitespace characters
case .LF, .CR, .TAB, .SPACE, .FF, .VT:
break
// 2. Null
// We won't treat null in the middle of the buffer as a whitespace.
// Define it as an error instead. Otherwise, lexer must generate EOF token
case .NUL:
fatalError("Unexpected null character")
// 3. Brackets, colons etc.
case .AT:
NextToken = .AtSign
return
case .LBR:
NextToken = .Lbrace
return
case .LSQ:
NextToken = .Lsquare
return
case .LPAR:
NextToken = .Lparen
return
case .RBR:
NextToken = .Rbrace
return
case .RSQ:
NextToken = .Rsquare
return
case .RPAR:
NextToken = .Rparen
return
case .COM:
NextToken = .Comma
return
case .SEM:
NextToken = .Semi
return
case .COL:
NextToken = .Colon
return
// 4. Literlas.
// as mentioned earlier, there are three types of literals in Swift:
// * Boolean literals
// * String literals
// * Number literlas
// Lexer may produce tokens only for two of them: boolean literlas are consumed as identifiers and processed later by top-
// level parser.
// 4.1. Numbers
case ASCII.NUM0...ASCII.NUM9:
lexNumber()
return
// 4.2. Strings
case .DQUOT:
lexStringLiteral()
return
// 5. Identifiers.
// There are three types of identifiers at lexer stage:
// * Dollar identifier ($0, $1 etc.)
// * Operator identifier
// * C-like identifiers
case .DOL:
lexDollarIdent()
return
case .CHR_a, .CHR_b, .CHR_c, .CHR_d, .CHR_e, .CHR_f, .CHR_g, .CHR_h, .CHR_i,
.CHR_j, .CHR_k, .CHR_l, .CHR_m, .CHR_n, .CHR_o, .CHR_p, .CHR_q, .CHR_r,
.CHR_s, .CHR_t, .CHR_u, .CHR_v, .CHR_w, .CHR_x, .CHR_y, .CHR_z,
.CHR_A, .CHR_B, .CHR_C, .CHR_D, .CHR_E, .CHR_F, .CHR_G, .CHR_H, .CHR_I,
.CHR_J, .CHR_K, .CHR_L, .CHR_M, .CHR_N, .CHR_O, .CHR_P, .CHR_Q, .CHR_R,
.CHR_S, .CHR_T, .CHR_U, .CHR_V, .CHR_W, .CHR_X, .CHR_Y, .CHR_Z,
.USCR:
lexIdentifier()
return
// Operator characters.
case .BSLSH:
switch Cursor.consume() {
case .BSLSH:
skipSlashSlashComment()
break
case .STAR:
skipSlashStarComment()
break
default:
lexOperatorIdentifier()
return
}
case .PERC, .EMARK, .QMARK, .LT, .GT, .EQ,
.MNS, .PLS, .STAR, .AMP, .VL, .CAR, .TLD,
.DOT:
lexOperatorIdentifier()
return
default:
NextToken = .Unknown
return
}
}
// We must define the point where lexer responds with EOF
assert(Cursor.atEnd())
NextToken = .EOF
}
private func skipSlashSlashComment() {
while !Cursor.atEnd() && Cursor.consume() != .LF {}
}
/// skipSlashStarComment - /**/ comments are skipped (treated as whitespace).
/// Note that (unlike in C) block comments can be nested.
private func skipSlashStarComment() {
// Make sure to advance over the * so that we don't incorrectly handle /*/ as
// the beginning and end of the comment.
Cursor.move()
// /**/ comments can be nested, keep track of how deep we've gone.
var Depth = 1;
while true {
switch Cursor.consume() {
case .STAR:
// Check for a '*/'
if Cursor.get() == .BSLSH {
Cursor.move()
Depth -= 1
if Depth == 0 {
return
}
}
case .BSLSH:
// Check for a '/*'
if Cursor.get() == .STAR {
Cursor.move()
Depth += 1
}
case .LF, .CR: break
case .NUL:
// If this is a random nul character in the middle of a buffer, skip it as
// whitespace.
if !Cursor.atEnd() {
// Diagnose lex_nul_character
break
}
// Otherwise, we have an unterminated /* comment.
// throw lex_unterminated_block_comment
return
default:
break // eat other characters.
}
}
}
/// lexDollarIdent - Match $[0-9a-zA-Z_$]+
private func lexDollarIdent() {
var length = 0
while Cursor.get().isDigit() {
length += 1
Cursor.move()
}
Cursor.move(direction: .Backward, count: length)
let identifier = String(bytes: Cursor.consumeBytes(count: length), encoding: .utf8)!
guard !identifier.isEmpty else {
// TODO: throw invalid_dollar_ident
NextToken = .Unknown
return
}
NextToken = .DollarIdent(identifier)
}
// Now it is time to find out how string literals are consumed.
/// lexStringLiteral:
/// string_literal ::= ["]([^"\\\n\r]|character_escape)*["]
private func lexStringLiteral() {
var unicodeSequence = [UInt32]()
// The loop is intended to consume characters untill the enclosing quote is found.
while true {
// As usual, the routine starts with some error handling logic.
// String literals cannot have \n or \r in them.
guard Cursor.get() != .LF || Cursor.get() != .CR else {
// TODO: raise "Unterminated String" exception
NextToken = .Unknown
return
}
let CharValue = lexUnicodeScalar(cursor: &Cursor)
if CharValue == ~1 {
NextToken = .Unknown
return
}
if CharValue == ~0 {
Cursor.move()
NextToken = .StringLiteral(String(unicodeSequence.flatMap(UnicodeScalar.init).map(Character.init)))
return
}
else {
unicodeSequence.append(CharValue)
}
}
}
private func lexNumber() {
Cursor.move(direction: .Backward)
var TokStart = Cursor
Cursor.move()
if TokStart.get() == .NUM0 && Cursor.get() == .CHR_x {
lexHexNumber()
return
}
if TokStart.get() == .NUM0 && Cursor.get() == .CHR_o {
// 0o[0-7][0-7_]*
var literalLength = 0
Cursor.move()
let characterRange = ASCII.NUM0...ASCII.NUM7
guard characterRange.contains(Cursor.get()) else {
fatalError("Expected digit in int literal")
}
while characterRange.contains(Cursor.get()) || Cursor.get() == .USCR {
literalLength += 1
Cursor.move()
}
NextToken = .IntegerLiteral(String(bytes: TokStart.consumeBytes(count: literalLength), encoding: .utf8)!)
return
}
if TokStart.get() == .NUM0 && Cursor.get() == .CHR_b {
// 0b[01][01_]*
var literalLength = 0
Cursor.move()
guard Cursor.get() == .NUM0 || Cursor.get() == .NUM1 else {
fatalError("Expected digit in int literal")
}
while Cursor.get() == .NUM0 || Cursor.get() == .NUM1 || Cursor.get() == .USCR {
literalLength += 1
Cursor.move()
}
NextToken = .IntegerLiteral(String(bytes: TokStart.consumeBytes(count: literalLength), encoding: .utf8)!)
return
}
// Handle a leading [0-9]+, lexing an integer or falling through if we have a
// floating point value.
var literalLength = 0
while Cursor.get().isDigit() || Cursor.get() == .USCR {
literalLength += 1
Cursor.move()
}
// Lex things like 4.x as '4' followed by a tok::period.
if Cursor.get() == .DOT {
// NextToken is the soon to be previous token
// Therefore: x.0.1 is sub-tuple access, not x.float_literal
Cursor.move()
let character = Cursor.get()
Cursor.move(direction: .Backward)
if !character.isDigit() || NextToken == .OpPeriod {
NextToken = .IntegerLiteral(String(bytes: TokStart.consumeBytes(count: literalLength), encoding: .utf8)!)
return
}
} else {
// Floating literals must have '.', 'e', or 'E' after digits. If it is
// something else, then this is the end of the token.
if Cursor.get() != .CHR_e && Cursor.get() != .CHR_E {
NextToken = .IntegerLiteral(String(bytes: TokStart.consumeBytes(count: literalLength), encoding: .utf8)!)
return
}
}
// Lex decimal point.
if Cursor.get() == .DOT {
Cursor.move()
// Lex any digits after the decimal point.
while Cursor.get().isDigit() || Cursor.get() == .USCR {
literalLength += 1
Cursor.move()
}
}
// Lex exponent.
if Cursor.get() == .CHR_E || Cursor.get() == .CHR_e {
literalLength += 1
Cursor.move()
if Cursor.get() == .PLS || Cursor.get() == .MNS {
literalLength += 1
Cursor.move()
}
guard Cursor.get().isDigit() else {
fatalError("Expected digit in fp component")
}
while Cursor.get().isDigit() || Cursor.get() == .USCR {
literalLength += 1
Cursor.move()
}
}
NextToken = .FloatingLiteral(String(bytes: TokStart.consumeBytes(count: literalLength), encoding: .utf8)!)
}
private func lexHexNumber() {
}
/// lexUnicodeScalar - Read a character and return its UnicodeScalar. If this is the
/// end of enclosing string/character sequence (i.e. the character is equal to
/// 'StopQuote'), this returns ~0U and leaves 'Cursor' pointing to the terminal
/// quote. If this is a malformed character sequence, it returns ~1U.
///
/// character_escape ::= [\][\] | [\]t | [\]n | [\]r | [\]" | [\]' | [\]0
/// character_escape ::= unicode_character_escape
private func lexUnicodeScalar(cursor: inout DataCursor) -> UInt32 {
let character = cursor.get()
cursor.move()
switch character {
case .DQUOT:
// If we found a closing quote character, we're done.
cursor.move()
return ~0
case .NUL:
return 0
case .LF, .CR:
// String literals cannot have \n or \r in them.
return ~1
case .SLSH:
// Escapes.
break
default:
return numericCast(character.rawValue)
}
switch cursor.get() {
case .NUM0:
cursor.move()
return 0
case .CHR_n:
cursor.move()
return numericCast(ASCII.LF.rawValue)
case .CHR_r:
cursor.move()
return numericCast(ASCII.CR.rawValue)
case .CHR_t:
cursor.move()
return numericCast(ASCII.TAB.rawValue)
case .DQUOT:
cursor.move()
return numericCast(ASCII.DQUOT.rawValue)
case .SQUOT:
cursor.move()
return numericCast(ASCII.SQUOT.rawValue)
case .SLSH:
cursor.move()
return numericCast(ASCII.SLSH.rawValue)
case .CHR_u:
// \u HEX HEX HEX HEX
cursor.move()
guard cursor.get() == .LBR else {
return ~1
}
return lexUnicodeEscape(cursor: &cursor)
default:
// Invalid escape.
// TODO: throw "Invalid escape"
return ~1
}
}
/// unicode_character_escape ::= [\]u{hex+}
/// hex ::= [0-9a-fA-F]
private func lexUnicodeEscape(cursor: inout DataCursor) -> UInt32 {
cursor.move()
var character = cursor.get()
var NumDigits = 0
while character.isHexDigit() {
NumDigits += 1
cursor.move()
character = cursor.get()
}
if character != .RBR {
// TODO: throw invalid_u_escape_rbrace
return ~1
}
if NumDigits < 1 || NumDigits > 8 {
// TODO: throw invalid_u_escape
return ~1
}
cursor.move(direction: .Backward, count: NumDigits)
let bytes = cursor.consumeBytes(count: NumDigits)
// consume }
cursor.move()
return UInt32(String(bytes: bytes, encoding: .utf8)!, radix: 16) ?? 0
}
/// lexIdentifier - Match [a-zA-Z_][a-zA-Z_$0-9]*
private func lexIdentifier() {
var identifierLength = 1
while Cursor.get().isValidIdentifierBody() {
identifierLength += 1
Cursor.move()
}
Cursor.move(direction: .Backward, count: identifierLength)
let identifier = String(bytes: Cursor.consumeBytes(count: identifierLength),
encoding: .utf8)!
NextToken = Token(identifier: identifier)
}
/// lexOperatorIdentifier - Match identifiers formed out of punctuation.
private func lexOperatorIdentifier() {
var identifierLength = 1
while Cursor.get().isValidOperatorBody() {
identifierLength += 1
Cursor.move()
}
// Decide between the binary, prefix, and postfix cases.
// It's binary if either both sides are bound or both sides are not bound.
// Otherwise, it's postfix if left-bound and prefix if right-bound.
Cursor.move(direction: .Backward, count: identifierLength + 1)
let isLeftBound: Bool = {
switch Cursor.get() {
case .SPACE, .CR, .LF, .TAB, // whitespace
.LBR, .LSQ, .LPAR, // opening delimiters
.COM, .SEM, .COL, // expression separators
.NUL:
return false
default:
return true
}
}()
Cursor.move()
let identifier = String(bytes: Cursor.consumeBytes(count: identifierLength),
encoding: .utf8)!
let isRightBound: Bool = {
switch Cursor.get() {
case .SPACE, .CR, .LF, .TAB, // whitespace
.RBR, .RSQ, .RPAR, // closing delimiters
.COM, .SEM, .COL, // expression separators
.NUL:
return false
case .DOT:
// Prefer the '^' in "x^.y" to be a postfix op, not binary, but the '^' in
// "^.y" to be a prefix op, not binary.
return !isLeftBound
default:
return true
}
}()
// Match various reserved words.
switch identifier {
case "=":
assert(isLeftBound == isRightBound)
NextToken = .OpEqual
return
case "&":
guard isRightBound && !isLeftBound else {
break
}
NextToken = .OpAmpPrefix
return
case ".":
if isLeftBound == isRightBound {
NextToken = .OpPeriod
}
else if isRightBound {
NextToken = .OpPeriodPrefix
}
else {
// Otherwise, it is probably a missing member.
NextToken = .Unknown
}
return
case "?":
NextToken = isLeftBound ? .OpQuestionPostfix : .OpQuestionInfix
return
case "->":
NextToken = .OpArrow
return
default:
break
}
if isLeftBound == isRightBound {
NextToken = isLeftBound ? .OpBinaryUnspaced(identifier) : .OpBinarySpaced(identifier)
}
else {
NextToken = isLeftBound ? .OpPostfix(identifier) : .OpPrefix(identifier)
}
}
}