forked from HaoZhongkai/GNOT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
100 lines (67 loc) · 3.92 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/usr/bin/env python
#-*- coding:utf-8 _*-
import argparse
def get_args():
parser = argparse.ArgumentParser(description='GNOT for operator learning')
parser.add_argument('--dataset',type=str,
default='ns2d',
choices = ['heat2d','ns2d','inductor2d','heatsink3d','ns2d_time','darcy2d',])
parser.add_argument('--component',type=str,
default='all',)
parser.add_argument('--seed', type=int, default=2023, metavar='Seed',
help='random seed (default: 1127802)')
parser.add_argument('--gpu', type=int, default=0, help='gpu id')
parser.add_argument('--use-tb', type=int, default=0, help='whether use tensorboard')
parser.add_argument('--comment',type=str,default="",help="comment for the experiment")
parser.add_argument('--train-num', type=str, default='all')
parser.add_argument('--test-num', type=str, default='all')
parser.add_argument('--sort-data',type=int, default=0)
parser.add_argument('--normalize_x', type=str, default='unit',
choices=['none', 'minmax', 'unit'])
parser.add_argument('--use-normalizer', type=str, default='unit',
choices=['none', 'minmax', 'unit', 'quantile'],
help="whether normalize y")
parser.add_argument('--epochs', type=int, default=500, metavar='N',
help='number of epochs to train (default: 100)')
parser.add_argument('--optimizer', type=str, default='AdamW',choices=['Adam','AdamW'])
parser.add_argument('--lr', type=float, default=0.001, metavar='LR',
help='max learning rate (default: 0.001)')
parser.add_argument('--weight-decay',type=float,default=5e-6
)
parser.add_argument('--grad-clip', type=str, default=1000.0
)
parser.add_argument('--batch-size', type=int, default=4, metavar='bsz',
help='input batch size for training (default: 8)')
parser.add_argument('--val-batch-size', type=int, default=8, metavar='bsz',
help='input batch size for validation (default: 4)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--lr-method',type=str, default='cycle',
choices=['cycle','step','warmup'])
parser.add_argument('--lr-step-size',type=int, default=50
)
parser.add_argument('--warmup-epochs',type=int, default=50)
parser.add_argument('--loss-name',type=str, default='rel2',
choices=['rel2','rel1', 'l2', 'l1'])
#### public model architecture parameters
parser.add_argument('--model-name', type=str, default='GNOT',
choices=['CGPT', 'GNOT',])
parser.add_argument('--n-hidden',type=int, default=64)
parser.add_argument('--n-layers',type=int, default=3)
#### MLP parameters
# common
parser.add_argument('--act', type=str, default='gelu',choices=['gelu','relu','tanh','sigmoid'])
parser.add_argument('--n-head',type=int, default=1)
parser.add_argument('--ffn-dropout', type=float, default=0.0, metavar='ffn_dropout',
help='dropout for the FFN in attention (default: 0.0)')
parser.add_argument('--attn-dropout',type=float, default=0.0)
parser.add_argument('--mlp-layers',type=int, default=3)
# Transformer
# parser.add_argument('--subsampled-len',type=int, default=256)
parser.add_argument('--attn-type',type=str, default='linear', choices=['random','linear','gated','hydra','kernel'])
parser.add_argument('--hfourier-dim',type=int,default=0)
# GNOT
parser.add_argument('--n-experts',type=int, default=1)
parser.add_argument('--branch-sizes',nargs="*",type=int, default=[2])
parser.add_argument('--n-inner',type=int, default=4)
return parser.parse_args()