-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathScheduling.c
131 lines (114 loc) · 4.66 KB
/
Scheduling.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <stdio.h>
struct Process {
int pid; // Process ID
int arrival_time; // Arrival Time
int burst_time; // Burst Time
int priority; // Priority (for Priority Scheduling)
};
// Function to calculate turnaround time and waiting time
void calculateTurnaroundTimeAndWaitingTime(struct Process processes[], int n) {
int completion_time[n];
int turnaround_time[n];
int waiting_time[n];
int total_waiting_time = 0;
int total_turnaround_time = 0;
// Calculate completion time for each process
completion_time[0] = processes[0].burst_time;
for (int i = 1; i < n; i++) {
completion_time[i] = completion_time[i - 1] + processes[i].burst_time;
}
// Calculate turnaround time and waiting time for each process
for (int i = 0; i < n; i++) {
turnaround_time[i] = completion_time[i] - processes[i].arrival_time;
waiting_time[i] = turnaround_time[i] - processes[i].burst_time;
total_turnaround_time += turnaround_time[i];
total_waiting_time += waiting_time[i];
}
// Calculate and print average turnaround time and waiting time
double avg_turnaround_time = (double)total_turnaround_time / n;
double avg_waiting_time = (double)total_waiting_time / n;
printf("Process\tTurnaround Time\tWaiting Time\n");
for (int i = 0; i < n; i++) {
printf("P%d\t%d\t\t%d\n", processes[i].pid, turnaround_time[i], waiting_time[i]);
}
printf("Average Turnaround Time: %.2lf\n", avg_turnaround_time);
printf("Average Waiting Time: %.2lf\n", avg_waiting_time);
}
int main() {
int n; // Number of processes
printf("Enter the number of processes: ");
scanf("%d", &n);
struct Process processes[n];
// Input process details
for (int i = 0; i < n; i++) {
processes[i].pid = i + 1;
printf("Enter Arrival Time for P%d: ", i + 1);
scanf("%d", &processes[i].arrival_time);
printf("Enter Burst Time for P%d: ", i + 1);
scanf("%d", &processes[i].burst_time);
printf("Enter Priority for P%d (for Priority Scheduling): ", i + 1);
scanf("%d", &processes[i].priority);
}
// Simulate FCFS (First-Come-First-Serve)
printf("\nFCFS Scheduling:\n");
calculateTurnaroundTimeAndWaitingTime(processes, n);
// Simulate SJF (Shortest Job First)
// Sort processes based on burst time (shortest first)
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (processes[j].burst_time > processes[j + 1].burst_time) {
// Swap processes[j] and processes[j + 1]
struct Process temp = processes[j];
processes[j] = processes[j + 1];
processes[j + 1] = temp;
}
}
}
printf("\nSJF Scheduling:\n");
calculateTurnaroundTimeAndWaitingTime(processes, n);
// Simulate Priority Scheduling
// Sort processes based on priority (lower value is higher priority)
for (int i = 0; i < n - 1; i++) {
for (int j = 0; j < n - i - 1; j++) {
if (processes[j].priority > processes[j + 1].priority) {
// Swap processes[j] and processes[j + 1]
struct Process temp = processes[j];
processes[j] = processes[j + 1];
processes[j + 1] = temp;
}
}
}
printf("\nPriority Scheduling:\n");
calculateTurnaroundTimeAndWaitingTime(processes, n);
// Simulate Round Robin Scheduling (preemptive) with time quantum of 4 units
int time_quantum = 4;
int remaining_burst_time[n];
for (int i = 0; i < n; i++) {
remaining_burst_time[i] = processes[i].burst_time;
}
int current_time = 0;
int completed = 0;
printf("\nRound Robin Scheduling:\n");
while (completed < n) {
for (int i = 0; i < n; i++) {
if (remaining_burst_time[i] > 0) {
if (remaining_burst_time[i] <= time_quantum) {
current_time += remaining_burst_time[i];
remaining_burst_time[i] = 0;
processes[i].burst_time = 0;
} else {
current_time += time_quantum;
remaining_burst_time[i] -= time_quantum;
}
if (remaining_burst_time[i] == 0) {
completed++;
processes[i].burst_time = 0;
int turnaround_time = current_time - processes[i].arrival_time;
int waiting_time = turnaround_time - processes[i].burst_time;
printf("P%d\t%d\t%d\n", processes[i].pid, turnaround_time, waiting_time);
}
}
}
}
return 0;
}