Date and Time: Jun 21, 2024, 1:53 PM (EST)
Link: https://leetcode.com/problems/subsets/
Given an integer array nums
of unique elements, return all possible
subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,3]
Output: [ [], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3] ]
Example 2:
Input: nums = [0]
Output: [ [], [0] ]
For this type of question "permutation type", we can also think about the base case to append and return, if i == len(nums)
. Then we can pop()
the last element from subset
and add nums[i+1]
into subset[]
, and we repeat pop()
from subset
and adding nums[i+1]
.
This is the print of subset[]
for each backtrack()
call.
[]
[1]
[1, 2]
[1, 2, 3]
[1, 2]
[1]
[1, 3]
[1]
[]
[2]
[2, 3]
[2]
[]
[3]
[]
This is the illustration of backtracking for this problem. To form all possible subsets, we can use empty set []
to create a subset that can skip an element, like "[1, 3]
".
class Solution:
def subsets(self, nums: List[int]) -> List[List[int]]:
# Run Backtrack, use ptr i to keep track of current index in nums
# Base case: if i == len(nums), append curSum to res and return
# Otherwise, increment i += 1 and add new element into curSum
# TC: O(2^n), n=len(nums), SC: O(2^n)
res = []
def backtr(i, curSum):
if i == len(nums):
res.append(curSum.copy())
return
curSum.append(nums[i])
backtr(i+1, curSum)
curSum.pop()
backtr(i+1, curSum)
backtr(0, [])
return res
Time Complexity:
Space Complexity:
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> res = new ArrayList<>();
List<Integer> subset = new ArrayList<>();
backtrack(nums, 0, res, subset);
return res;
}
private void backtrack(int[] nums, int index, List<List<Integer>> res, List<Integer> subset) {
if (index == nums.length) {
res.add(new ArrayList<>(subset));
return;
}
subset.add(nums[index]);
backtrack(nums, index+1, res, subset);
subset.remove(subset.size()-1);
backtrack(nums, index+1, res, subset);
}
}
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> res;
vector<int> subset;
backtrack(nums, 0, res, subset);
return res;
}
void backtrack(vector<int>& nums, int index, vector<vector<int>>& res, vector<int>& subset) {
if (index == nums.size()) {
res.push_back(subset);
return;
}
subset.push_back(nums[index]);
backtrack(nums, index+1, res, subset);
subset.pop_back();
backtrack(nums, index+1, res, subset);
}
};