forked from wrf-model/WRF
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodule_random.F
250 lines (212 loc) · 9.6 KB
/
module_random.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
module module_random
! This module implements an array of pseudo-random number
! generators (PRNGs). The internal state of the PRNGs is stored
! in state1, state2, state3, and state4 arrays. The rand_grid
! routines will produce grids of random numbers from these
! generators. The sequence of random numbers will not vary with
! processor decomposition, operating system, computer, compiler or
! compiler optimizations, and will be the same every time the
! model is run (if the seed is unchanged). Each gridpoint will
! produce its own independent sequence of random numbers.
! The srand_grid routine seeds the random number generators, given
! an optional "seed" argument. Each random number generator in
! the grid is given a different seed, but those seeds are based on
! the seed you provide. If you do not provide one, the same value
! (0) will be used every time the model is run. That is chosen
! intentionally to ensure reproducability of results.
! The rand_grid routines will produce random numbers using the
! arrays of random number generators. The floating-point
! versions of rand_grid produce numbers between 0, inclusive, and 1,
! exclusive. The integer versions produce numbers that span the
! entire range of values representable by the datatype. The full
! precision of the floating-point values are generated.
! Also, this module is not dependent on dimension ordering.
! Arrays are defined as i,j,k, but the code still works if
! the dimensions have a different ordering
! The implementation of the PRNG is in bobrand.c
! Author: Sam Trahan, October 2011
interface rand_grid
module procedure rand_grid_i4
module procedure rand_grid_r4
module procedure rand_grid_i8
module procedure rand_grid_r8
end interface
contains
subroutine srand_grid(state1,state2,state3,state4, &
IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE,seed)
! This routine initializes a grid of random number generators,
! using the optional seed argument. Every random number
! generator will have its own seed, but the seed you provide
! will be used to modify those seeds. If you provide the same
! seed, the same sequence of random numbers should be produced,
! regardless of computer, compiler, optimization, or operating
! system.
! If you do not provide a seed, the value 0 will be used,
! ensuring that each simulation will produce identical output.
implicit none
integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(in), optional :: seed
integer(kind=4) :: iseed
integer :: i,j,k
INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE
integer :: seeds(its:ite),n
if(present(seed)) then
iseed=seed
else
iseed=0
endif
n=ite-its+1
! Seed all random number generators.
do k=kts,kte
do j=jts,jte
do i=its,ite
seeds(i)=(kde-kds+1)*((jde-jds+1)*i+j)+k
! We can use the same seed here every time
! because bobraninit will use both the
! "seeds" array and the "seed" integer to
! create the actual seed for each generator.
enddo
call bobraninit(state1(its,j,k),state2(its,j,k), &
state3(its,j,k),state4(its,j,k), &
seeds,seed,n)
enddo
enddo
end subroutine srand_grid
subroutine rand_grid_r4(state1,state2,state3,state4,randdat, &
IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE)
! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an
! array of random 32-bit floating-point numbers uniformly
! distributed from 0 (inclusive) to 1 (exclusive).
!
! Make sure you call srand_grid before calling this routine.
implicit none
integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme)
real(kind=4), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme)
integer :: i,j,k,n
INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE
n=ite-its+1
do k=kts,kte
do j=jts,jte
call bobranval_r4(state1(its,j,k),state2(its,j,k), &
state3(its,j,k),state4(its,j,k), &
randdat(its,j,k),n)
enddo
enddo
end subroutine rand_grid_r4
subroutine rand_grid_i4(state1,state2,state3,state4,randdat, &
IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE)
! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an
! array of random 32-bit signed integers. The integers will
! be uniformly distributed across the entire range of
! representation of their datatype: -2**31..2**31-1.
!
! Make sure you call srand_grid before calling this routine.
!
! If you want integers that fall in a specified range, you
! can produce them like this:
!
! do (for each gridpoint)
! ! random numbers uniformly distributed from 0..9:
! randdat(i,j,k)=mod(abs(randdat(i,j,k),10))
! enddo
implicit none
integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme)
integer :: i,j,k,n
INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE
n=ite-its+1
do k=kts,kte
do j=jts,jte
call bobranval_i4(state1(its,j,k),state2(its,j,k), &
state3(its,j,k),state4(its,j,k), &
randdat(its,j,k),n)
enddo
enddo
end subroutine rand_grid_i4
subroutine rand_grid_r8(state1,state2,state3,state4,randdat, &
IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE)
! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an
! array of random 64-bit floating-point numbers uniformly
! distributed from 0 (inclusive) to 1 (exclusive).
!
! Make sure you call srand_grid before calling this routine.
implicit none
integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme)
real(kind=8), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme)
integer :: i,j,k,n
INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE
n=ite-its+1
do k=kts,kte
do j=jts,jte
call bobranval_r8(state1(its,j,k),state2(its,j,k), &
state3(its,j,k),state4(its,j,k), &
randdat(its,j,k),n)
enddo
enddo
end subroutine rand_grid_r8
subroutine rand_grid_i8(state1,state2,state3,state4,randdat, &
IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE)
! This routine fills randdat(ITS:ITE,JTS:JTE,KTS:KTE) with an
! array of random 64-bit signed integers. The integers will
! be uniformly distributed across the entire range of
! representation of their datatype: -2**63..2**63-1.
!
! Make sure you call srand_grid before calling this routine.
!
! If you want integers that fall in a specified range, you
! can produce them like this:
!
! do (for each gridpoint)
! ! random numbers uniformly distributed from 0..9:
! randdat(i,j,k)=mod(abs(randdat(i,j,k),10))
! enddo
implicit none
integer(kind=4), intent(inout) :: state1(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state2(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state3(ims:ime,jms:jme,kms:kme)
integer(kind=4), intent(inout) :: state4(ims:ime,jms:jme,kms:kme)
integer(kind=8), intent(inout) :: randdat(ims:ime,jms:jme,kms:kme)
integer :: i,j,k,n
INTEGER, intent(in) :: IDS,IDE,JDS,JDE,KDS,KDE, &
IMS,IME,JMS,JME,KMS,KME, &
ITS,ITE,JTS,JTE,KTS,KTE
n=ite-its+1
do k=kts,kte
do j=jts,jte
call bobranval_i8(state1(its,j,k),state2(its,j,k), &
state3(its,j,k),state4(its,j,k), &
randdat(its,j,k),n)
enddo
enddo
end subroutine rand_grid_i8
end module module_random