forked from VowpalWabbit/vowpal_wabbit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlrq.cc
266 lines (218 loc) · 7.66 KB
/
lrq.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
#include <string.h>
#include <float.h>
#include "reductions.h"
#include "rand48.h"
using namespace LEARNER;
struct LRQstate {
vw* all; // feature creation, audit, hash_inv
bool lrindices[256];
size_t orig_size[256];
std::set<std::string> lrpairs;
bool dropout;
uint64_t seed;
uint64_t initial_seed;
};
bool valid_int (const char* s)
{
char* endptr;
int v = strtoul (s, &endptr, 0);
(void) v;
return (*s != '\0' && *endptr == '\0');
}
inline bool
cheesyrbit (uint64_t& seed)
{
return merand48 (seed) > 0.5;
}
inline float
cheesyrand (uint32_t x)
{
uint64_t seed = x;
return merand48 (seed);
}
inline bool
example_is_test (example& ec)
{
return ec.l.simple.label == FLT_MAX;
}
void
reset_seed (LRQstate& lrq)
{
if (lrq.all->bfgs)
lrq.seed = lrq.initial_seed;
}
template <bool is_learn>
void predict_or_learn(LRQstate& lrq, base_learner& base, example& ec)
{
vw& all = *lrq.all;
// Remember original features
memset (lrq.orig_size, 0, sizeof (lrq.orig_size));
for (unsigned char* i = ec.indices.begin; i != ec.indices.end; ++i)
{
if (lrq.lrindices[*i])
lrq.orig_size[*i] = ec.atomics[*i].size ();
}
size_t which = ec.example_counter;
float first_prediction = 0;
float first_loss = 0;
unsigned int maxiter = (is_learn && ! example_is_test (ec)) ? 2 : 1;
bool do_dropout = lrq.dropout && is_learn && ! example_is_test (ec);
float scale = (! lrq.dropout || do_dropout) ? 1.f : 0.5f;
for (unsigned int iter = 0; iter < maxiter; ++iter, ++which)
{
// Add left LRQ features, holding right LRQ features fixed
// and vice versa
// TODO: what happens with --lrq ab2 --lrq ac2
// i.e. namespace occurs multiple times (?)
for (set<string>::iterator i = lrq.lrpairs.begin ();
i != lrq.lrpairs.end ();
++i)
{
unsigned char left = (*i)[which%2];
unsigned char right = (*i)[(which+1)%2];
unsigned int k = atoi (i->c_str () + 2);
for (unsigned int lfn = 0; lfn < lrq.orig_size[left]; ++lfn)
{
feature* lf = ec.atomics[left].begin + lfn;
float lfx = lf->x;
size_t lindex = lf->weight_index + ec.ft_offset;
for (unsigned int n = 1; n <= k; ++n)
{
if (! do_dropout || cheesyrbit (lrq.seed))
{
uint32_t lwindex = (uint32_t)(lindex + (n << all.reg.stride_shift));
float* lw = &all.reg.weight_vector[lwindex & all.reg.weight_mask];
// perturb away from saddle point at (0, 0)
if (is_learn && ! example_is_test (ec) && *lw == 0)
*lw = cheesyrand (lwindex);
for (unsigned int rfn = 0;
rfn < lrq.orig_size[right];
++rfn)
{
feature* rf = ec.atomics[right].begin + rfn;
audit_data* ra = ec.audit_features[right].begin + rfn;
// NB: ec.ft_offset added by base learner
float rfx = rf->x;
size_t rindex = rf->weight_index;
uint32_t rwindex = (uint32_t)(rindex + (n << all.reg.stride_shift));
feature lrq;
lrq.x = scale * *lw * lfx * rfx;
lrq.weight_index = rwindex;
ec.atomics[right].push_back (lrq);
if (all.audit || all.hash_inv)
{
std::stringstream new_feature_buffer;
new_feature_buffer << right << '^'
<< ra->feature << '^'
<< n;
#ifdef _WIN32
char* new_space = _strdup("lrq");
char* new_feature = _strdup(new_feature_buffer.str().c_str());
#else
char* new_space = strdup("lrq");
char* new_feature = strdup(new_feature_buffer.str().c_str());
#endif
audit_data ad = { new_space, new_feature, lrq.weight_index, lrq.x, true };
ec.audit_features[right].push_back (ad);
}
}
}
}
}
}
if (is_learn)
base.learn(ec);
else
base.predict(ec);
// Restore example
if (iter == 0)
{
first_prediction = ec.pred.scalar;
first_loss = ec.loss;
}
else
{
ec.pred.scalar = first_prediction;
ec.loss = first_loss;
}
for (set<string>::iterator i = lrq.lrpairs.begin ();
i != lrq.lrpairs.end ();
++i)
{
unsigned char right = (*i)[(which+1)%2];
ec.atomics[right].end =
ec.atomics[right].begin + lrq.orig_size[right];
if (all.audit || all.hash_inv)
{
for (audit_data* a = ec.audit_features[right].begin + lrq.orig_size[right];
a < ec.audit_features[right].end;
++a)
{
free (a->space);
free (a->feature);
}
ec.audit_features[right].end =
ec.audit_features[right].begin + lrq.orig_size[right];
}
}
}
}
base_learner* lrq_setup(vw& all)
{//parse and set arguments
if (missing_option<vector<string>>(all, "lrq", "use low rank quadratic features"))
return nullptr;
new_options(all, "Lrq options")
("lrqdropout", "use dropout training for low rank quadratic features");
add_options(all);
if(!all.vm.count("lrq"))
return nullptr;
LRQstate& lrq = calloc_or_die<LRQstate>();
size_t maxk = 0;
lrq.all = &all;
new(&lrq.lrpairs)
std::set<std::string> (all.vm["lrq"].as<vector<string> > ().begin (),
all.vm["lrq"].as<vector<string> > ().end ());
lrq.initial_seed = lrq.seed = all.random_seed | 8675309;
if (all.vm.count("lrqdropout"))
{
lrq.dropout = true;
*all.file_options << " --lrqdropout ";
}
else
lrq.dropout = false;
for (set<string>::iterator i = lrq.lrpairs.begin ();
i != lrq.lrpairs.end ();
++i)
*all.file_options << " --lrq " << *i;
if (! all.quiet)
{
cerr << "creating low rank quadratic features for pairs: ";
if (lrq.dropout)
cerr << "(using dropout) ";
}
for (set<string>::iterator i = lrq.lrpairs.begin ();
i != lrq.lrpairs.end ();
++i)
{
if(!all.quiet){
if (( i->length() < 3 ) || ! valid_int (i->c_str () + 2)) {
cerr << endl << "error, low-rank quadratic features must involve two sets and a rank.\n";
throw exception();
}
cerr << *i << " ";
}
// TODO: colon-syntax
unsigned int k = atoi (i->c_str () + 2);
lrq.lrindices[(int) (*i)[0]] = 1;
lrq.lrindices[(int) (*i)[1]] = 1;
maxk = max (maxk, k);
}
if(!all.quiet)
cerr<<endl;
all.wpp = all.wpp * (uint32_t)(1 + maxk);
learner<LRQstate>& l = init_learner(&lrq, setup_base(all), predict_or_learn<true>,
predict_or_learn<false>, 1 + maxk);
l.set_end_pass(reset_seed);
// TODO: leaks memory ?
return make_base(l);
}