-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpredict.py
271 lines (245 loc) · 10.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import json
import glob
import tqdm
import traceback
from argparse import ArgumentParser
import time
import torch
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertConfig,AlbertTokenizer
import random
import numpy as np
from model import OneIE
from config import Config
from util import save_result
from data import IEDatasetEval, IEDataset
from convert import json_to_cs
from scorer import score_graphs
from util import generate_vocabs
cur_dir = os.path.dirname(os.path.realpath(__file__))
format_ext_mapping = {'txt': 'txt', 'ltf': 'ltf.xml', 'json': 'json',
'json_single': 'json'}
def seed_torch(seed=1024):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(1024)
def load_model(model_path, device=0, gpu=False, beam_size=5):
print('Loading the model from {}'.format(model_path))
map_location = 'cuda:{}'.format(device) if gpu else 'cpu'
state = torch.load(model_path, map_location=map_location)
config = state['config']
if type(config) is dict:
config = Config.from_dict(config)
if 'albert' in config.bert_model_name:
# breakpoint()
config.bert_cache_dir = os.path.join(cur_dir, 'albert')
else:
config.bert_cache_dir = os.path.join(cur_dir, 'bert')
vocabs = state['vocabs']
valid_patterns = state['valid']
# recover the model
model = OneIE(config, vocabs, valid_patterns)
model.load_state_dict(state['model'], False)
model.beam_size = beam_size
if gpu:
model.cuda(device)
if 'albert' in config.bert_model_name:
# tokenizer = AlbertTokenizer.from_pretrained(config.bert_model_name,
# cache_dir=config.bert_cache_dir,
# do_lower_case=False)
tokenizer = AlbertTokenizer.from_pretrained(config.bert_model_name)
# breakpoint()
else:
tokenizer = BertTokenizer.from_pretrained(config.bert_model_name,
cache_dir=config.bert_cache_dir,
do_lower_case=False)
return model, tokenizer, config
def load_previous_model(model_path, device=0, gpu=False):
print('Loading the previous model from {}'.format(model_path))
map_location = 'cuda:{}'.format(device) if gpu else 'cpu'
state = torch.load(model_path, map_location=map_location)
config = state['config']
if type(config) is dict:
config = Config.from_dict(config)
config.bert_cache_dir = os.path.join(cur_dir, 'albert')
vocabs = state['vocabs']
valid_patterns = state['valid']
# recover the model
model = OneIE(config, vocabs, valid_patterns)
model.load_state_dict(state['model'], False)
model.beam_size = 5
if gpu:
model.cuda(device)
tokenizer = AlbertTokenizer.from_pretrained(config.bert_model_name,
cache_dir=config.bert_cache_dir,
do_lower_case=False)
return model, tokenizer, config, vocabs
def predict_document(path, model, tokenizer, config, batch_size=10,
max_length=128, gpu=False, input_format='txt',
language='english'):
"""
:param path (str): path to the input file.
:param model (OneIE): pre-trained model object.
:param tokenizer (BertTokenizer): BERT tokenizer.
:param config (Config): configuration object.
:param batch_size (int): Batch size (default=20).
:param max_length (int): Max word piece number (default=128).
:param gpu (bool): Use GPU or not (default=False).
:param input_format (str): Input file format (txt or ltf, default='txt).
:param langauge (str): Input document language (default='english').
"""
test_set = IEDatasetEval(path, max_length=max_length, gpu=gpu,
input_format=input_format, language=language)
test_set.numberize(tokenizer)
# test_set = IEDataset(path, gpu=gpu)
# train_set = IEDataset('data/dygie/train.oneie.json', gpu=gpu)
# dev_set = IEDataset('data/dygie/dev.oneie.json', gpu=gpu)
# vocabs = generate_vocabs([train_set, dev_set, test_set])
# test_set.numberize(tokenizer,vocabs)
# document info
info = {
'doc_id': test_set.doc_id,
'ori_sent_num': test_set.ori_sent_num,
'sent_num': len(test_set)
}
# info = {
# 'doc_id': 0,
# 'ori_sent_num': 10,
# 'sent_num': 10
# }
# prediction result
result = []
# test_gold_graphs = []
# test_pred_graphs = []
start_time = time.perf_counter()
for batch in DataLoader(test_set, batch_size=batch_size, shuffle=False,
collate_fn=test_set.collate_fn):
# breakpoint()
graphs = model.predict(batch)
# test_gold_graphs.extend(batch.graphs)
# test_pred_graphs.extend(graphs)
# end_time = time.time()
for graph, tokens, sent_id, token_ids in zip(graphs, batch.tokens,
batch.sent_ids,
batch.token_ids):
graph.clean(relation_directional=config.relation_directional,
symmetric_relations=config.symmetric_relations)
result.append((sent_id, token_ids, tokens, graph))
end_time = time.perf_counter()
speed = 832/(end_time-start_time)
print(speed)
# breakpoint()
# breakpoint()
# test_scores = score_graphs(test_gold_graphs, test_pred_graphs,
# relation_directional=config.relation_directional)
# print(test_scores)
# infer_speed = 10/(sum(infer_time[2:])/(len(infer_time)-2))
return result, info
def predict(model_path, input_path, output_path, log_path=None, cs_path=None,
batch_size=5, max_length=200, device=0, gpu=False,
file_extension='json', beam_size=5, input_format='txt',
language='english'):
"""Perform information extraction.
:param model_path (str): Path to the pre-trained model file.
:param input_path (str): Path to the input directory.
:param output_path (str): Path to the output directory.
:param log_path (str): Path to the log file.
:param cs_path (str): (optional) Path to the cold-start format output directory.
:param batch_size (int): Batch size (default=50).
:param max_length (int): Max word piece number for each sentence (default=128).
:param device (int): GPU device index (default=0).
:param gpu (bool): Use GPU (default=False).
:param file_extension (str): Input file extension. Only files ending with the
given extension will be processed (default='txt').
:param beam_size (int): Beam size of the decoder (default=5).
:param input_format (str): Input file format (txt or ltf, default='txt').
:param language (str): Document language (default='english').
"""
# set gpu device
if gpu:
torch.cuda.set_device(device)
# load the model from file
model, tokenizer, config = load_model(model_path, device=device, gpu=gpu,
beam_size=beam_size)
# model, tokenizer, config, _ = load_previous_model(model_path, device=device, gpu=gpu)
# breakpoint()
# get the list of documents
# breakpoint()
file_list = glob.glob(os.path.join(input_path, 'test.oneie.{}'.format(file_extension)))
# log writer
if log_path:
log_writer = open(log_path, 'w', encoding='utf-8')
# run the model; collect result and info
doc_info_list = []
progress = tqdm.tqdm(total=len(file_list), ncols=75)
for f in file_list:
progress.update(1)
try:
doc_result, doc_info = predict_document(
f, model, tokenizer, config, batch_size=batch_size,
max_length=max_length, gpu=gpu, input_format=input_format,
language=language)
# save json format result
doc_id = doc_info['doc_id']
with open(os.path.join(output_path, '{}.json'.format(doc_id)), 'w') as w:
for sent_id, token_ids, tokens, graph in doc_result:
output = {
'doc_id': doc_id,
'sent_id': sent_id,
'token_ids': token_ids,
'tokens': tokens,
'graph': graph.to_dict()
}
w.write(json.dumps(output) + '\n')
# write doc info
if log_path:
log_writer.write(json.dumps(doc_info) + '\n')
log_writer.flush()
except Exception as e:
traceback.print_exc()
if log_path:
log_writer.write(json.dumps(
{'file': file, 'message': str(e)}) + '\n')
log_writer.flush()
progress.close()
# convert to the cold-start format
if cs_path:
print('Converting to cs format')
json_to_cs(output_path, cs_path)
parser = ArgumentParser()
parser.add_argument('-m', '--model_path', help='path to the trained model')
parser.add_argument('-i', '--input_dir', help='path to the input folder (ltf files)')
parser.add_argument('-o', '--output_dir', help='path to the output folder (json files)')
parser.add_argument('-l', '--log_path', default=None, help='path to the log file')
parser.add_argument('-c', '--cs_dir', default=None, help='path to the output folder (cs files)')
parser.add_argument('--gpu', action='store_true', help='use gpu')
parser.add_argument('-d', '--device', default=0, type=int, help='gpu device index')
parser.add_argument('-b', '--batch_size', default=30, type=int, help='batch size')
parser.add_argument('--max_len', default=128, type=int, help='max sentence length')
parser.add_argument('--beam_size', default=5, type=int, help='beam set size')
parser.add_argument('--lang', default='english', help='Model language')
parser.add_argument('--format', default='txt', help='Input format (txt, ltf, json)')
args = parser.parse_args()
extension = format_ext_mapping.get(args.format, 'ltf.xml')
predict(
model_path=args.model_path,
input_path=args.input_dir,
output_path=args.output_dir,
cs_path=args.cs_dir,
log_path=args.log_path,
batch_size=args.batch_size,
max_length=args.max_len,
device=args.device,
gpu=args.gpu,
beam_size=args.beam_size,
file_extension=extension,
input_format=args.format,
language=args.lang,
)