forked from chebfun/chebfun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaaa.m
514 lines (445 loc) · 16.7 KB
/
aaa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
function [r, pol, res, zer, zj, fj, wj, errvec, wt] = aaa(F, varargin)
%AAA AAA and AAA-Lawson (near-minimax) real or complex rational approximation.
% R = AAA(F, Z) computes the AAA rational approximant R (function handle) to
% data F on the set of sample points Z. F may be given by its values at Z,
% or as a function handle or a chebfun. R = AAA(F, Z, 'degree', N) computes
% the minimax approximation of degree N (i.e., rational type (N,N)).
%
% [R, POL, RES, ZER] = AAA(F, Z) returns vectors of poles POL, residues RES,
% and zeros ZER of R.
%
% [R, POL, RES, ZER, ZJ, FJ, WJ] = AAA(F, Z) also returns the vectors
% of support points ZJ, approximation values FJ = r(ZJ), and weights WJ
% of the barycentric representation of R.
%
% [R, POL, RES, ZER, ZJ, FJ, WJ, ERRVEC] = AAA(F, Z) also returns the
% vector of errors ||f-r||_infty in successive iteration steps of AAA.
%
% R = AAA(F, Z, NAME, VALUE) sets the following parameters:
% - 'tol', TOL: relative tolerance (default TOL = 1e-13),
% - 'degree', N: maximal degree (default N = 99).
% Output rational approximant will be at most of type (N,N).
% Identical to 'mmax', N+1.
% By default, this will turn on Lawson iteration: see next paragraph.
% - 'mmax', MMAX: maximal number of terms in the barycentric representation
% (default MMAX = 100). R will be of degree MMAX-1.
% Identical to 'degree', MMAX-1. Also turns on Lawson iteration.
% - 'dom', DOM: domain (default DOM = [-1, 1]). No effect if Z is provided.
% - 'cleanup', 'off' or 0: turns off automatic removal of numerical Froissart
% doublets
% - 'cleanuptol', CLEANUPTOL: cleanup tolerance (default CLEANUPTOL = TOL).
% Poles with residues less than this number times the maximum absolute
% component of F are deemed spurious by the cleanup procedure. If TOL = 0,
% then CLEANUPTOL defaults to 1e-13.
% - 'lawson', NLAWSON: take NLAWSON iteratively reweighted least-squares steps
% to bring approximation closer to minimax; specifying NLAWSON = 0
% ensures there is no Lawson iteration. See next paragraph.
%
% If 'degree' or equivalently 'mmax' is specified and 'lawson' is not, then
% AAA attempts to find a minimax approximant of degree N by Lawson iteration.
% This will generally be successful only if the minimax error is well
% above machine precision, and is more reliable for complex problems than
% real ones. If 'degree' and 'lawson' are both specified, then exactly
% NLAWSON Lawson steps are taken (so NLAWSON = 0 corresponds to AAA
% approximation with no Lawson iteration). The final weight vector WT of
% the Lawson iteration is available with
% [R, POL, RES, ZER, ZJ, FJ, WJ, ERRVEC, WT] = AAA(F, Z).
%
% Note that R may have fewer than N poles and zeros. This may happen,
% for example, if N is too large, or if F is even and N is odd, or if F is
% odd and N is even.
%
% One can also execute R = AAA(F), with no specification of a set Z.
% If F is a vector, this is equivalent to R = AAA(F, Z) with
% Z = LINSPACE(-1, 1, LENGTH(F)). If F is a function handle or a chebfun,
% AAA attempts to resolve F on its domain, which defaults to [-1,1] for
% a function handle.
%
% Examples:
% r = aaa(@exp); xx = linspace(-1,1); plot(xx,r(xx)-exp(xx))
%
% r = aaa(@exp,'degree',4); xx = linspace(-1,1); plot(xx,r(xx)-exp(xx))
%
% Z = exp(2i*pi*linspace(0,1,500));
% [r,pol,res] = aaa(@tan,Z); disp([pol res])
%
% X = linspace(-1,1,1000); F = tanh(20*X);
% subplot(1,2,1)
% r = aaa(F,X,'degree',15,'lawson',0); plot(X,F-r(X)), hold on
% r = aaa(F,X,'degree',15); plot(X,F-r(X)), hold off
%
% Z = exp(1i*pi*linspace(-1,1,1000)); G = exp(Z);
% subplot(1,2,2)
% r = aaa(G,Z,'degree',3,'lawson',0); plot(G-r(Z)), axis equal, hold on
% r = aaa(G,Z,'degree',3); plot(G-r(Z)), axis equal, hold off
%
% References:
% [1] Yuji Nakatsukasa, Olivier Sete, Lloyd N. Trefethen, "The AAA algorithm
% for rational approximation", SIAM J. Sci. Comp. 40 (2018), A1494-A1522.
%
% [2] Yuji Nakasukasa and Lloyd N. Trefethen, An algorithm for real and
% complex rational minimax approximation, arXiv, 2019.
%
% See also CF, CHEBPADE, MINIMAX, PADEAPPROX, RATINTERP.
% Copyright 2017 by The University of Oxford and The Chebfun Developers.
% See http://www.chebfun.org/ for Chebfun information.
% Parse inputs:
[F, Z, M, dom, tol, mmax, cleanup_flag, cleanup_tol, needZ, mmax_flag, nlawson] ...
= parseInputs(F, varargin{:});
if ( needZ )
% Z was not provided. Try to resolve F on its domain.
[r, pol, res, zer, zj, fj, wj, errvec] = ...
aaa_autoZ(F, dom, tol, mmax, cleanup_flag, cleanup_tol, mmax_flag, nlawson);
return
end
% Remove any infinite or NaN function values (avoid SVD failures):
toKeep = ~isinf(F);
F = F(toKeep); Z = Z(toKeep);
toKeep = ~isnan(F);
F = F(toKeep); Z = Z(toKeep);
% Remove repeated elements of Z and corresponding elements of F:
[Z, uni] = unique(Z,'stable'); F = F(uni);
M = length(Z);
% Relative tolerance:
reltol = tol * norm(F, inf);
% Left scaling matrix:
SF = spdiags(F, 0, M, M);
% Initialization for AAA iteration:
J = 1:M;
zj = [];
fj = [];
C = [];
errvec = [];
R = mean(F);
% AAA iteration:
for m = 1:mmax
% Select next support point where error is largest:
[~, jj] = max(abs(F - R)); % Select next support point.
zj = [zj; Z(jj)]; % Update support points.
fj = [fj; F(jj)]; % Update data values.
J(J == jj) = []; % Update index vector.
C = [C 1./(Z - Z(jj))]; % Next column of Cauchy matrix.
% Compute weights:
Sf = diag(fj); % Right scaling matrix.
A = SF*C - C*Sf; % Loewner matrix.
[~, ~, V] = svd(A(J,:), 0); % Reduced SVD.
wj = V(:,m); % weight vector = min sing vector
% Rational approximant on Z:
N = C*(wj.*fj); % Numerator
D = C*wj; % Denominator
R = F;
R(J) = N(J)./D(J);
% Error in the sample points:
maxerr = norm(F - R, inf);
errvec = [errvec; maxerr];
% Check if converged:
if ( maxerr <= reltol )
break
end
end
maxerrAAA = maxerr; % error at end of AAA
% When M == 2, one weight is zero and r is constant.
% To obtain a good approximation, interpolate in both sample points.
if ( M == 2 )
zj = Z;
fj = F;
wj = [1; -1]; % Only pole at infinity.
wj = wj/norm(wj); % Impose norm(w) = 1 for consistency.
errvec(2) = 0;
maxerrAAA = 0;
end
% We now enter Lawson iteration: barycentric IRLS = iteratively reweighted
% least-squares if 'lawson' is specified with NLAWSON > 0 or 'mmax' is
% specified and 'lawson' is not. In the latter case the number of steps
% is chosen adaptively. Note that the Lawson iteration is unlikely to be
% successful when the errors are close to machine precision.
wj0 = wj; fj0 = fj; % Save parameters in case Lawson fails
wt = NaN(M,1); wt_new = ones(M,1);
if ( nlawson > 0 ) % Lawson iteration
maxerrold = maxerrAAA;
maxerr = maxerrold;
nj = length(zj);
A = [];
for j = 1:nj % Cauchy/Loewner matrix
A = [A 1./(Z-zj(j)) F./(Z-zj(j))];
end
for j = 1:nj
[i,~] = find(Z==zj(j)); % support pt rows are special
A(i,:) = 0;
A(i,2*j-1) = 1;
A(i,2*j) = F(i);
end
stepno = 0;
while ( (nlawson < inf) & (stepno < nlawson) ) |...
( (nlawson == inf) & (stepno < 20) ) |...
( (nlawson == inf) & (maxerr/maxerrold < .999) & (stepno < 1000) )
stepno = stepno + 1;
wt = wt_new;
W = spdiags(sqrt(wt),0,M,M);
[U,S,V] = svd(W*A,0);
c = V(:,end);
denom = zeros(M,1); num = zeros(M,1);
for j = 1:nj
denom = denom + c(2*j)./(Z-zj(j));
num = num - c(2*j-1)./(Z-zj(j));
end
R = num./denom;
for j = 1:nj
[i,~] = find(Z==zj(j)); % support pt rows are special
R(i) = -c(2*j-1)/c(2*j);
end
err = F - R; abserr = abs(err);
wt_new = wt.*abserr; wt_new = wt_new/norm(wt_new,inf);
maxerrold = maxerr;
maxerr = max(abserr);
end
wj = c(2:2:end);
fj = -c(1:2:end)./wj;
% If Lawson has not reduced the error, return to pre-Lawson values.
if (maxerr > maxerrAAA) & (nlawson == Inf)
wj = wj0; fj = fj0;
end
end
% Remove support points with zero weight:
I = find(wj == 0);
zj(I) = [];
wj(I) = [];
fj(I) = [];
% Construct function handle:
r = @(zz) reval(zz, zj, fj, wj);
% Compute poles, residues and zeros:
[pol, res, zer] = prz(r, zj, fj, wj);
if ( cleanup_flag & nlawson == 0) % Remove Froissart doublets
[r, pol, res, zer, zj, fj, wj] = ...
cleanup(r, pol, res, zer, zj, fj, wj, Z, F, cleanup_tol);
end
end % of AAA()
%% parse Inputs:
function [F, Z, M, dom, tol, mmax, cleanup_flag, cleanup_tol, ...
needZ, mmax_flag, nlawson] = parseInputs(F, varargin)
% Input parsing for AAA.
% Check if F is empty:
if ( isempty(F) )
error('CHEBFUN:aaa:emptyF', 'No function given.')
elseif ( isa(F, 'chebfun') )
if ( size(F, 2) ~= 1 )
error('CHEBFUN:aaa:nColF', 'Input chebfun must have one column.')
end
end
% Sample points:
if ( ~isempty(varargin) && isfloat(varargin{1}) )
% Z is given.
Z = varargin{1};
if ( isempty(Z) )
error('CHEBFUN:aaa:emptyZ', ...
'If sample set is provided, it must be nonempty.')
end
varargin(1) = [];
end
% Set defaults for other parameters:
tol = 1e-13; % Relative tolerance.
mmax = 100; % Maximum number of terms.
cleanup_tol = 1e-13; % Cleanup tolerance.
nlawson = Inf; % number of Lawson steps (Inf means adaptive)
% Domain:
if ( isa(F, 'chebfun') )
dom = F.domain([1, end]);
else
dom = [-1, 1];
end
cleanup_flag = 1; % Cleanup on.
mmax_flag = 0; % Checks if mmax manually specified.
cleanup_set = 0; % Checks if cleanup_tol manually specified.
% Check if parameters have been provided:
while ( ~isempty(varargin) )
if ( strncmpi(varargin{1}, 'tol', 3) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
tol = varargin{2};
if ~cleanup_set & tol > 0 % If not manually set, set cleanup_tol to tol.
cleanup_tol = tol;
end
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'degree', 6) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
if ( mmax_flag == 1 ) && ( mmax ~= varargin{2}+1 )
error('CHEBFUN:aaa:degmmaxmismatch', ' mmax must equal degree+1.')
end
mmax = varargin{2}+1;
mmax_flag = 1;
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'mmax', 4) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
if ( mmax_flag == 1 ) && ( mmax ~= varargin{2})
error('CHEBFUN:aaa:degmmaxmismatch', ' mmax must equal degree+1.')
end
mmax = varargin{2};
mmax_flag = 1;
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'lawson', 6) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
nlawson = varargin{2};
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'dom', 3) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 2]) )
dom = varargin{2};
end
varargin([1, 2]) = [];
if ( isa(F, 'chebfun') )
if ( ~isequal(dom, F.domain([1, end])) )
warning('CHEBFUN:aaa:dom', ...
['Given domain does not match the domain of the chebfun.\n', ...
'Results may be inaccurate.'])
end
end
elseif ( strncmpi(varargin{1}, 'cleanuptol', 10) )
if ( isfloat(varargin{2}) && isequal(size(varargin{2}), [1, 1]) )
cleanup_tol = varargin{2};
cleanup_set = 1;
end
varargin([1, 2]) = [];
elseif ( strncmpi(varargin{1}, 'cleanup', 7) )
if ( strncmpi(varargin{2}, 'off', 3) || ( varargin{2} == 0 ) )
cleanup_flag = 0;
end
varargin([1, 2]) = [];
else
error('CHEBFUN:aaa:UnknownArg', 'Argument unknown.')
end
end
% Deal with Z and F:
if ( ~exist('Z', 'var') && isfloat(F) )
% F is given as data values, pick same number of sample points:
Z = linspace(dom(1), dom(2), length(F)).';
end
if ( exist('Z', 'var') )
% Z is given:
needZ = 0;
% Work with column vector:
Z = Z(:);
M = length(Z);
% Function values:
if ( isa(F, 'function_handle') || isa(F, 'chebfun') )
% Sample F on Z:
F = F(Z);
elseif ( isnumeric(F) )
% Work with column vector and check that it has correct length.
F = F(:);
if ( length(F) ~= M )
error('CHEBFUN:aaa:lengthFZ', ...
'Inputs F and Z must have the same length.')
end
elseif ( ischar(F) )
% F is given as a string input. Convert it to a function handle.
F = str2op(vectorize(F));
F = F(Z);
else
error('CHEBFUN:aaa:UnknownF', 'Input for F not recognized.')
end
else
% Z was not given. Set flag that Z needs to be determined.
% Also set Z and M since they are needed as output.
needZ = 1;
Z = [];
M = length(Z);
end
if ~mmax_flag & (nlawson == Inf)
nlawson = 0;
end
end % End of PARSEINPUT().
%% Cleanup
function [r, pol, res, zer, z, f, w] = ...
cleanup(r, pol, res, zer, z, f, w, Z, F, cleanup_tol)
% Remove spurious pole-zero pairs.
% Find negligible residues:
ii = find(abs(res) < cleanup_tol * norm(F, inf));
ni = length(ii);
if ( ni == 0 )
% Nothing to do.
return
elseif ( ni == 1 )
warning('CHEBFUN:aaa:Froissart','1 Froissart doublet');
else
warning('CHEBFUN:aaa:Froissart',[int2str(ni) ' Froissart doublets']);
end
% For each spurious pole find and remove closest support point:
for j = 1:ni
azp = abs(z-pol(ii(j)));
jj = find(azp == min(azp),1);
% Remove support point(s):
z(jj) = [];
f(jj) = [];
end
% Remove support points z from sample set:
for jj = 1:length(z)
F(Z == z(jj)) = [];
Z(Z == z(jj)) = [];
end
m = length(z);
M = length(Z);
% Build Loewner matrix:
SF = spdiags(F, 0, M, M);
Sf = diag(f);
C = 1./bsxfun(@minus, Z, z.'); % Cauchy matrix.
A = SF*C - C*Sf; % Loewner matrix.
% Solve least-squares problem to obtain weights:
[~, ~, V] = svd(A, 0);
w = V(:,m);
% Build function handle and compute poles, residues and zeros:
r = @(zz) reval(zz, z, f, w);
[pol, res, zer] = prz(r, z, f, w);
end % End of CLEANUP().
%% Automated choice of sample set
function [r, pol, res, zer, zj, fj, wj, errvec] = ...
aaa_autoZ(F, dom, tol, mmax, cleanup_flag, cleanup_tol, mmax_flag, nlawson)
%
% Flag if function has been resolved:
isResolved = 0;
% Main loop:
for n = 5:14
% Sample points:
% Next line enables us to do pretty well near poles
Z = linspace(dom(1)+1.37e-8*diff(dom), dom(2)-3.08e-9*diff(dom), 1 + 2^n).';
[r, pol, res, zer, zj, fj, wj, errvec] = aaa(F, Z, 'tol', tol, ...
'mmax', mmax, 'cleanup', cleanup_flag, 'cleanuptol', cleanup_tol, 'lawson', nlawson);
% Test if rational approximant is accurate:
reltol = tol * norm(F(Z), inf);
% On Z(n):
err(1,1) = norm(F(Z) - r(Z), inf);
Zrefined = linspace(dom(1)+1.37e-8*diff(dom), dom(2)-3.08e-9*diff(dom), ...
round(1.5 * (1 + 2^(n+1)))).';
err(2,1) = norm(F(Zrefined) - r(Zrefined), inf);
if ( all(err < reltol) )
% Final check that the function is resolved, inspired by sampleTest().
% Pseudo random sample points in [-1, 1]:
xeval = [-0.357998918959666; 0.036785641195074];
% Scale to dom:
xeval = (dom(2) - dom(1))/2 * xeval + (dom(2) + dom(1))/2;
if ( norm(F(xeval) - r(xeval), inf) < reltol )
isResolved = 1;
break
end
end
end
if ( ( isResolved == 0 ) && ~mmax_flag )
warning('CHEBFUN:aaa:notResolved', ...
'Function not resolved using %d pts.', length(Z))
end
end % End of AAA_AUTOZ().
function op = str2op(op)
% Convert string inputs to either numeric format or function_handles.
sop = str2num(op);
if ( ~isempty(sop) )
op = sop;
else
depVar = symvar(op);
if ( numel(depVar) ~= 1 )
error('CHEBFUN:CHEBFUN:str2op:indepvars', ...
'Incorrect number of independent variables in string input.');
end
op = eval(['@(' depVar{:} ')', op]);
end
end % End of STR2OP().