forked from xxlong0/Wonder3D
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_mv_enhancement.py
230 lines (185 loc) · 8.48 KB
/
run_mv_enhancement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
from typing import Dict, Optional, Tuple, List
from PIL import Image
import numpy as np
from dataclasses import dataclass
import torch
import torch.utils.checkpoint
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from diffusers import (
AutoencoderKL,
DDPMScheduler,
UNet2DConditionModel,
UniPCMultistepScheduler,
EulerAncestralDiscreteScheduler
)
from collections import defaultdict
import rembg
from torchvision.utils import make_grid, save_image
from MVControlNet.model.controlnet import ControlNetModel
from MVControlNet.pipeline.pipeline_controlnet_img2img import StableDiffusionControlNetImg2ImgPipeline
from MVControlNet.data.enhancement_dataset import InferenceImageDataset
import torchvision.transforms as transforms
to_pil = transforms.ToPILImage()
weight_dtype = torch.half
@dataclass
class TestConfig:
pretrained_model_name_or_path: str
controlnet_model_name_or_path: str
revision: Optional[str]
validation_batch_size: int
pipe_validation_kwargs: Dict
validation_guidance_scales: List[float]
camera_embedding_lr_mult: float
num_views: int
def save_image(tensor, fp):
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy()
# pdb.set_trace()
im = Image.fromarray(ndarr)
im.save(fp)
return ndarr
def load_image_encoder():
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
)
return image_encoder
def save_image_numpy(ndarr, fp):
im = Image.fromarray(ndarr)
im.save(fp)
def unmake_grid(img_grid, nrow):
img_grid = img_grid[0]
_, H, W = img_grid.shape
num_images = nrow * (H // (W // nrow))
img_height = H // (num_images // nrow)
img_width = W // nrow
images = []
for i in range(0, H, img_height):
for j in range(0, W, img_width):
image = img_grid[:, i:i+img_height, j:j+img_width]
images.append(image)
return images
def load_controlnet_pipeline(cfg):
controlnet = ControlNetModel.from_pretrained(cfg.controlnet_model_name_or_path, low_cpu_mem_usage=False)
pipeline = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
cfg.pretrained_model_name_or_path,
controlnet=controlnet,
safety_checker=None,
torch_dtype=weight_dtype,
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
# load ip_adapter to pipeline
image_encoder = load_image_encoder().to('cuda:0')
pipeline.image_encoder = image_encoder
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.safetensors")
pipeline.set_ip_adapter_scale(1.0)
if torch.cuda.is_available():
pipeline.to('cuda:0')
# sys.main_lock = threading.Lock()
return pipeline
NEG_PROMPT = "sketch, sculpture, hand drawing, outline, single color, NSFW, lowres, bad anatomy,bad hands, text, error, missing fingers, yellow sleeves, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,(worst quality:1.4),(low quality:1.4)"
def custom_collate(batch):
batch = [item for item in batch if item is not None]
if len(batch) == 0:
return None
return torch.utils.data.dataloader.default_collate(batch)
def pred_enhancement_joint(mv_image, mv_normlas, renderd_mv_image, renderd_mv_normal, front_image, pipeline, seed=42, crop_size=192, camera_type='ortho', cfg=None, case_name='img', refine_idx=0, output_path='outputs'):
VIEWS = ['front', 'right', 'back', 'left']
pipeline.set_progress_bar_config(disable=True)
if seed is None:
generator = None
else:
generator = torch.Generator(device=pipeline.device).manual_seed(seed)
# Get the dataset
validation_dataset = InferenceImageDataset(
crop_size=crop_size,
mv_imgs=mv_image,
mv_normals=mv_normlas,
renderd_mv_imgs=renderd_mv_image,
renderd_mv_normals=renderd_mv_normal,
front_img=front_image,
)
# DataLoaders creation:
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset, batch_size=cfg.validation_batch_size, shuffle=False, num_workers=cfg.dataloader_num_workers,
collate_fn=custom_collate
)
images_cond, images_gt, images_pred = [], [], defaultdict(list)
batch = next(iter(validation_dataloader))
# repeat (2B, Nv, 3, H, W)
input_image, input_normal = batch['imgs_in'].to(dtype=weight_dtype), batch['normals_in'].to(
dtype=weight_dtype)
input_image_mv, input_normal_mv = batch['imgs_mv'].to(dtype=weight_dtype), batch['normals_mv'].to(
dtype=weight_dtype)
inputs = torch.cat([input_image, input_normal], dim=0)
inputs_mv = torch.cat([input_image_mv, input_normal_mv], dim=0)
images_cond.append(inputs)
controlnet_image = inputs_mv.to(device=pipeline.device)
text_color = batch['task_name_color']
text_normal = batch['task_name_normal']
validation_prompt = text_color + text_normal
input_images_front, input_normal_front = (batch['front_in_color'].to(device=pipeline.device),
batch['front_in_normal'].to(device=pipeline.device))
validation_image = torch.cat([input_images_front, input_normal_front], dim=0).to(device=pipeline.device)
np_validation_image = np.array(validation_image.to("cpu"))
num_views = len(VIEWS)
with torch.autocast("cuda"):
# B*Nv images
if refine_idx == 0:
strength = 0.2
controlnet_condition_scle = 0.7
else:
strength = 0.1
controlnet_condition_scle = 1.
for guidance_scale in cfg.validation_guidance_scales:
images = pipeline(
prompt=validation_prompt,
neg_prompt=[NEG_PROMPT] * controlnet_image.shape[0],
image=controlnet_image,
ip_adapter_image=np_validation_image,
control_image=controlnet_image,
num_inference_steps=50,
strength=strength,
height=1024,
width=1024,
generator=generator,
guidance_scale=guidance_scale,
output_type='pt',
controlnet_conditioning_scale=controlnet_condition_scle
).images
bsz = images.shape[0] // 2
images_pred = images[:bsz]
normals_pred = images[bsz:]
rm_normals_pil = []
colors_pil = []
for i in range(bsz):
scene = os.path.basename(case_name.split('.')[0])
scene_dir = os.path.join(output_path, scene, 'mv-enhancement-'+str(refine_idx), camera_type)
normal_dir = os.path.join(scene_dir, "normals")
color_dir = os.path.join(scene_dir, "colors")
masked_colors_dir = os.path.join(scene_dir, "masked_colors")
os.makedirs(normal_dir, exist_ok=True)
os.makedirs(masked_colors_dir, exist_ok=True)
os.makedirs(color_dir, exist_ok=True)
normals = unmake_grid(normals_pred, 2)
colors = unmake_grid(images_pred, 2)
rembg_session = rembg.new_session()
for j in range(num_views):
view = VIEWS[j]
idx = i * num_views + j
normal = normals[idx]
color = colors[idx]
normal_filename = f"normals_000_{view}.png"
rgb_filename = f"rgb_000_{view}.png"
normal = save_image(normal, os.path.join(normal_dir, normal_filename))
color = save_image(color, os.path.join(color_dir, rgb_filename))
rm_normal = rembg.remove(normal, alpha_matting=True, session=rembg_session)
save_image_numpy(rm_normal, os.path.join(scene_dir, normal_filename))
rm_normals_pil.append(Image.fromarray(rm_normal))
colors_pil.append(to_pil(color))
save_image(images_pred[0], os.path.join(scene_dir, f'color_grid_img.png'))
save_image(normals_pred[0], os.path.join(scene_dir, f'normal_grid_img.png'))
save_image(input_image[0], os.path.join(scene_dir, f'color_grid_img_cond.png'))
save_image(input_normal[0], os.path.join(scene_dir, f'normal_grid_img_cond.png'))
return rm_normals_pil, colors_pil