Skip to content

JacubovskiBreno/docker-spark-iceberg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spark + Iceberg Quickstart Image

This is a docker compose environment to quickly get up and running with a Spark environment and a local Iceberg catalog. It uses a postgres database as a JDBC catalog.

note: If you don't have docker installed, you can head over to the Get Docker page for installation instructions.

Usage

Start up the notebook server by running the following.

docker-compose up

The notebook server will then be available at http://localhost:8888

While the notebook server is running, you can use any of the following commands if you prefer to use spark-shell, spark-sql, or pyspark.

docker exec -it spark-iceberg spark-shell
docker exec -it spark-iceberg spark-sql
docker exec -it spark-iceberg pyspark

To stop everything, just run docker-compose down.

Troubleshooting & Maintenance

Resetting Catalog Data

To reset the catalog and data, remove the postgres and warehouse directories.

docker-compose down && docker-compose kill && rm -rf ./postgres && rm -rf ./warehouse

Refreshing Docker Image

The prebuilt spark image is uploaded to Dockerhub. Out of convenience, the image tag defaults to latest.

If you have an older version of the image, you might need to remove it to upgrade.

docker image rm tabulario/spark-iceberg && docker-compose pull

Use Dockerfile In This Repo

To directly use the Dockerfile in this repo (as opposed to pulling the hosted tabulario/spark-iceberg image), change the following line in any of the docker-compose files.

-    image: tabulario/spark-iceberg
+    build: spark/

Deploying Changes

To deploy changes to the hosted docker image tabulario/spark-iceberg, run the following. (Requires access to the tabulario docker hub account)

cd spark
docker buildx build -t tabulario/spark-iceberg --platform=linux/amd64,linux/arm64 . --push

For more information on getting started with using Iceberg, checkout the Getting Started guide in the official docs.

The repository for the docker image is located on dockerhub.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 76.8%
  • Dockerfile 10.1%
  • Java 7.9%
  • Shell 2.9%
  • Python 2.3%