-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_training.py
32 lines (26 loc) · 1.13 KB
/
face_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np
from PIL import Image
import os
import cv2
# 人脸数据路径
path = '//home/pi/CLBDEMO/a/Facedata'
recognizer = cv2.face.createLBPHFaceRecognizer()
detector = cv2.CascadeClassifier("//home/pi/CLBDEMO/a/haarcascade_frontalface_default.xml")
def getImagesAndLabels(path):
imagePaths = [os.path.join(path, f) for f in os.listdir(path)] # join函数的作用?
faceSamples = []
ids = []
for imagePath in imagePaths:
PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale
img_numpy = np.array(PIL_img, 'uint8')
id = int(os.path.split(imagePath)[-1].split(".")[1])
faces = detector.detectMultiScale(img_numpy)
for (x, y, w, h) in faces:
faceSamples.append(img_numpy[y:y + h, x: x + w])
ids.append(id)
return faceSamples, ids
print('Training faces. It will take a few seconds. Wait ...')
faces, ids = getImagesAndLabels(path)
recognizer.train(faces, np.array(ids))
recognizer.save(r'//home/pi/CLBDEMO/a/face_trainer/trainer.yml')
print("{0} faces trained. Exiting Program".format(len(np.unique(ids))))