forked from pdollar/toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchnsCompute.m
194 lines (185 loc) · 9.69 KB
/
chnsCompute.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
function chns = chnsCompute( I, varargin )
% Compute channel features at a single scale given an input image.
%
% Compute the channel features as described in:
% P. Dollár, Z. Tu, P. Perona and S. Belongie
% "Integral Channel Features", BMVC 2009.
% Channel features have proven very effective in sliding window object
% detection, both in terms of *accuracy* and *speed*. Numerous feature
% types including histogram of gradients (hog) can be converted into
% channel features, and overall, channels are general and powerful.
%
% Given an input image I, a corresponding channel is a registered map of I,
% where the output pixels are computed from corresponding patches of input
% pixels (thus preserving overall image layout). A trivial channel is
% simply the input grayscale image, likewise for a color image each color
% channel can serve as a channel. Other channels can be computed using
% linear or non-linear transformations of I, various choices implemented
% here are described below. The only constraint is that channels must be
% translationally invariant (i.e. translating the input image or the
% resulting channels gives the same result). This allows for fast object
% detection, as the channels can be computed once on the entire image
% rather than separately for each overlapping detection window.
%
% Currently, three channel types are available by default (to date, these
% have proven the most effective for sliding window object detection):
% (1) color channels (computed using rgbConvert.m)
% (2) gradient magnitude (computed using gradientMag.m)
% (3) quantized gradient channels (computed using gradientHist.m)
% For more information about each channel type, including the exact input
% parameters and their meanings, see the respective m-files which perform
% the actual computatons (chnsCompute is essentially a wrapper function).
% The converted color channels serve as input to gradientMag/gradientHist.
%
% Additionally, custom channels can be specified via an optional struct
% array "pCustom" which may have 0 or more custom channel definitions. Each
% custom channel is generated via a call to "chns=feval(hFunc,I,pFunc{:})".
% The color space of I is determined by pColor.colorSpace, use the setting
% colorSpace='orig' if the input image is not an 'rgb' image and should be
% left unchanged (e.g. if I has multiple channels). The input I will have
% type single and the output of hFunc should also have type single.
%
% "shrink" (which should be an integer) determines the amount to subsample
% the computed channels (in applications such as detection subsamping does
% not affect performance). "smoothIm" controls the amount the image is
% smoothed prior to computing the channels (typically the amount of image
% smoothing should be small or gradient information is lost); "smoothChn"
% controls the amount of smoothing after the channels are created (and
% controls the integration scale of the channels, see the BMVC09 paper);
% The params for each channel type are described in detail in the
% respective function. In addition, each channel type has a param "enabled"
% that determines if the channel is computed. If chnsCompute() is called
% with no inputs, the output is the complete default params (pChns).
% Otherwise the outputs are the computed channels and additional meta-data
% (see below). The channels are computed at a single scale, for (fast)
% multi-scale channel computation see chnsPyramid.
%
% An emphasis has been placed on speed, with the code undergoing heavy
% optimization. Computing the full set of channels used in the BMVC09 paper
% referenced above on a 480x640 image runs over *100 fps* on a single core
% of a machine from 2011 (although runtime depends on input parameters).
%
% USAGE
% pChns = chnsCompute()
% chns = chnsCompute( I, pChns )
%
% INPUTS
% I - [hxwx3] input image (uint8 or single/double in [0,1])
% pChns - parameters (struct or name/value pairs)
% .shrink - [4] integer downsampling amount for channels
% .smoothIm - [1] radius for image smoothing (using convTri)
% .smoothChn - [1] radius for channel smoothing (using convTri)
% .pColor - parameters for color space:
% .enabled - [1] if true enable color channels
% .colorSpace - ['luv'] choices are: 'gray', 'rgb', 'hsv', 'orig'
% .pGradMag - parameters for gradient magnitude:
% .enabled - [1] if true enable gradient magnitude channel
% .colorChn - [0] if>0 color channel to use for grad computation
% .normRad - [5] normalization radius for gradient
% .normConst - [.005] normalization constant for gradient
% .pGradHist - parameters for gradient histograms:
% .enabled - [1] if true enable gradient histogram channels
% .binSize - [shrink] spatial bin size (defaults to shrink)
% .nOrients - [6] number of orientation channels
% .softBin - [0] if true use "soft" bilinear spatial binning
% .useHog - [0] if true perform 4-way hog normalization/clipping
% .clipHog - [.2] value at which to clip hog histogram bins
% .pCustom - parameters for custom channels (optional struct array):
% .enabled - [1] if true enable custom channel type
% .name - ['REQ'] custom channel type name
% .hFunc - ['REQ'] function handle for computing custom channels
% .pFunc - [{}] additional params for chns=hFunc(I,pFunc{:})
% .padWith - [0] how channel should be padded (e.g. 0,'replicate')
% .complete - [] if true does not check/set default vals in pChns
%
% OUTPUTS
% chns - output struct
% .pChns - exact input parameters used
% .nTypes - number of channel types
% .data - [nTypes x 1] cell [h/shrink x w/shrink x nChns] channels
% .info - [nTypes x 1] struct array
% .name - channel type name
% .pChn - exact input parameters for given channel type
% .nChns - number of channels for given channel type
% .padWith - how channel should be padded (0,'replicate')
%
% EXAMPLE - default channels
% I=imResample(imread('peppers.png'),[480 640]); pChns=chnsCompute();
% tic, for i=1:100, chns=chnsCompute(I,pChns); end; toc
% figure(1); montage2(cat(3,chns.data{:}));
%
% EXAMPLE - default + custom channels
% I=imResample(imread('peppers.png'),[480 640]); pChns=chnsCompute();
% hFunc=@(I) 5*sqrt(max(0,max(convBox(I.^2,2)-convBox(I,2).^2,[],3)));
% pChns.pCustom=struct('name','Std02','hFunc',hFunc); pChns.complete=0;
% tic, chns=chnsCompute(I,pChns); toc
% figure(1); im(chns.data{4});
%
% See also rgbConvert, gradientMag, gradientHist, chnsPyramid, chnsScaling
%
% Piotr's Image&Video Toolbox Version NEW
% Copyright 2012 Piotr Dollar & Ron Appel. [pdollar-at-caltech.edu]
% Please email me if you find bugs, or have suggestions or questions!
% Licensed under the Simplified BSD License [see external/bsd.txt]
% get default parameters pChns
if(nargin==2), pChns=varargin{1}; else pChns=[]; end
if( ~isfield(pChns,'complete') || pChns.complete~=1 || isempty(I) )
p=struct('enabled',{},'name',{},'hFunc',{},'pFunc',{},'padWith',{});
pChns = getPrmDflt(varargin,{'shrink',4,'smoothIm',1,'smoothChn',1,...
'pColor',{},'pGradMag',{},'pGradHist',{},'pCustom',p,'complete',1},1);
pChns.pColor = getPrmDflt( pChns.pColor, {'enabled',1,...
'colorSpace','luv'}, 1 );
pChns.pGradMag = getPrmDflt( pChns.pGradMag, {'enabled',1,...
'colorChn',0,'normRad',5,'normConst',.005}, 1 );
pChns.pGradHist = getPrmDflt( pChns.pGradHist, {'enabled',1,...
'binSize',[],'nOrients',6,'softBin',0,'useHog',0,'clipHog',.2}, 1 );
if( isempty(pChns.pGradHist.binSize) )
pChns.pGradHist.binSize=pChns.shrink; end
nc=length(pChns.pCustom); pc=cell(1,nc);
for i=1:nc, pc{i} = getPrmDflt( pChns.pCustom(i), {'enabled',1,...
'name','REQ','hFunc','REQ','pFunc',{},'padWith',0}, 1 ); end
if( nc>0 ), pChns.pCustom=[pc{:}]; end
end
if(nargin==0), chns=pChns; return; end
% create output struct
info=struct('name',{},'pChn',{},'nChns',{},'padWith',{});
chns=struct('pChns',pChns,'nTypes',0,'data',{{}},'info',info);
% crop I so divisible by shrink and get target dimensions
shrink=pChns.shrink; [h,w,~]=size(I); cr=mod([h w],shrink);
if(any(cr)), h=h-cr(1); w=w-cr(2); I=I(1:h,1:w,:); end
h=h/shrink; w=w/shrink; smoothChn=pChns.smoothChn;
% compute color channels
p=pChns.pColor; nm='color channels';
I=rgbConvert(I,p.colorSpace); I=convTri(I,pChns.smoothIm);
if(p.enabled), chns=addChn(chns,I,nm,p,'replicate',smoothChn,h,w); end
% compute gradient magnitude channel
p=pChns.pGradMag; nm='gradient magnitude';
if( pChns.pGradHist.enabled )
[M,O]=gradientMag(I,p.colorChn,p.normRad,p.normConst);
elseif( p.enabled )
M=gradientMag(I,p.colorChn,p.normRad,p.normConst);
end
if(p.enabled), chns=addChn(chns,M,nm,p,0,smoothChn,h,w); end
% compute gradient histgoram channels
p=pChns.pGradHist; nm='gradient histogram';
if( p.enabled )
H=gradientHist(M,O,p.binSize,p.nOrients,p.softBin,p.useHog,p.clipHog);
chns=addChn(chns,H,nm,pChns.pGradHist,0,smoothChn,h,w);
end
% compute custom channels
p=pChns.pCustom;
for i=find( [p.enabled] )
C=feval(p(i).hFunc,I,p(i).pFunc{:});
chns=addChn(chns,C,p(i).name,p(i),p(i).padWith,smoothChn,h,w);
end
end
function chns = addChn( chns, data, name, pChn, padWith, smoothChn, h, w )
% Helper function to add a channel to chns.
[h1,w1,~]=size(data);
if(h1~=h || w1~=w), data=imResampleMex(data,h,w,1);
assert(all(mod([h1 w1]./[h w],1)==0)); end
data = convTri(data,smoothChn);
chns.data{end+1}=data; chns.nTypes=chns.nTypes+1;
chns.info(end+1)=struct('name',name,'pChn',pChn,...
'nChns',size(data,3),'padWith',padWith);
end