-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_sle_hsl_cfl.py
454 lines (380 loc) · 16.4 KB
/
model_sle_hsl_cfl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
import sys, os
sys.path.append(os.path.dirname(__file__) + os.sep + '../')
sys.path.append("..")
import torch
import torch.nn as nn
from torch.nn import init
import torch.nn.functional as F
from resnet import resnet50
from Transformer import ViT
from HyperGraphs import HypergraphConv
from GAT import Graph_Attention_Union
import whitening
class whitening_scale_shift(nn.Module):
def __init__(self, planes, group_size, affine=True):
super(whitening_scale_shift, self).__init__()
self.planes = planes
self.group_size = group_size
self.affine = affine
self.wh = whitening.WTransform2d(self.planes,
self.group_size)
if self.affine:
self.gamma = nn.Parameter(torch.ones(self.planes, 1, 1))
self.beta = nn.Parameter(torch.zeros(self.planes, 1, 1))
def forward(self, x):
out = self.wh(x)
if self.affine:
out = out * self.gamma + self.beta + x
return out
class Bottleneck12(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck12, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Normalize(nn.Module):
def __init__(self, power=2):
super(Normalize, self).__init__()
self.power = power
def forward(self, x):
norm = x.pow(self.power).sum(1, keepdim=True).pow(1. / self.power)
out = x.div(norm)
return out
class Non_local(nn.Module):
def __init__(self, in_channels, reduc_ratio=2):
super(Non_local, self).__init__()
self.in_channels = in_channels
self.inter_channels = reduc_ratio // reduc_ratio
self.g = nn.Sequential(
nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1, stride=1,
padding=0),
)
self.W = nn.Sequential(
nn.Conv2d(in_channels=self.inter_channels, out_channels=self.in_channels,
kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(self.in_channels),
)
nn.init.constant_(self.W[1].weight, 0.0)
nn.init.constant_(self.W[1].bias, 0.0)
self.theta = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
self.phi = nn.Conv2d(in_channels=self.in_channels, out_channels=self.inter_channels,
kernel_size=1, stride=1, padding=0)
def forward(self, x):
'''
:param x: (b, c, t, h, w)
:return:
'''
batch_size = x.size(0)
g_x = self.g(x).view(batch_size, self.inter_channels, -1)
g_x = g_x.permute(0, 2, 1)
theta_x = self.theta(x).view(batch_size, self.inter_channels, -1)
theta_x = theta_x.permute(0, 2, 1)
phi_x = self.phi(x).view(batch_size, self.inter_channels, -1)
f = torch.matmul(theta_x, phi_x)
N = f.size(-1)
# f_div_C = torch.nn.functional.softmax(f, dim=-1)
f_div_C = f / N
y = torch.matmul(f_div_C, g_x)
y = y.permute(0, 2, 1).contiguous()
y = y.view(batch_size, self.inter_channels, *x.size()[2:])
W_y = self.W(y)
z = W_y + x
return z
# #####################################################################
def weights_init_kaiming(m):
classname = m.__class__.__name__
# print(classname)
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_out')
init.zeros_(m.bias.data)
elif classname.find('BatchNorm1d') != -1:
init.normal_(m.weight.data, 1.0, 0.01)
init.zeros_(m.bias.data)
def weights_init_classifier(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
init.normal_(m.weight.data, 0, 0.001)
if m.bias:
init.zeros_(m.bias.data)
class visible_module(nn.Module):
def __init__(self, arch='resnet50'):
super(visible_module, self).__init__()
model_v = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
self.visible = model_v
def forward(self, x):
x = self.visible.conv1(x)
x = self.visible.bn1(x)
x = self.visible.relu(x)
x = self.visible.maxpool(x)
return x
class thermal_module(nn.Module):
def __init__(self, arch='resnet50'):
super(thermal_module, self).__init__()
model_t = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
self.thermal = model_t
def forward(self, x):
x = self.thermal.conv1(x)
x = self.thermal.bn1(x)
x = self.thermal.relu(x)
x = self.thermal.maxpool(x)
return x
class base_resnet(nn.Module):
def __init__(self, arch='resnet50'):
super(base_resnet, self).__init__()
model_base = resnet50(pretrained=True,
last_conv_stride=1, last_conv_dilation=1)
# avg pooling to global pooling
model_base.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.base = model_base
def forward(self, x):
x = self.base.layer1(x)
x = self.base.layer2(x)
x = self.base.layer3(x)
x = self.base.layer4(x)
return x
class embed_net(nn.Module):
def __init__(self, class_num, no_local='on', gm_pool='on', arch='resnet50', dataset="sysu", plearn=0, stage=23,
depth=-1, head=-1, graphw=-1, gatw=-1.0, meanw=1.3, whiten=0, theta1=0.0, lambda1=1.3,edge=256):
super(embed_net, self).__init__()
self.thermal_module = thermal_module(arch=arch)
self.visible_module = visible_module(arch=arch)
self.base_resnet = base_resnet(arch=arch)
self.non_local = no_local
if self.non_local == 'on':
layers = [3, 4, 6, 3]
non_layers = [0, 2, 3, 0]
self.NL_1 = nn.ModuleList(
[Non_local(256) for i in range(non_layers[0])])
self.NL_1_idx = sorted([layers[0] - (i + 1) for i in range(non_layers[0])])
self.NL_2 = nn.ModuleList(
[Non_local(512) for i in range(non_layers[1])])
self.NL_2_idx = sorted([layers[1] - (i + 1) for i in range(non_layers[1])])
self.NL_3 = nn.ModuleList(
[Non_local(1024) for i in range(non_layers[2])])
self.NL_3_idx = sorted([layers[2] - (i + 1) for i in range(non_layers[2])])
self.NL_4 = nn.ModuleList(
[Non_local(2048) for i in range(non_layers[3])])
self.NL_4_idx = sorted([layers[3] - (i + 1) for i in range(non_layers[3])])
pool_dim = 2048
self.l2norm = Normalize(2)
self.bottleneck = nn.BatchNorm1d(pool_dim)
self.bottleneck.bias.requires_grad_(False) # no shift
self.classifier = nn.Linear(pool_dim, class_num, bias=False)
self.bottleneck.apply(weights_init_kaiming)
self.classifier.apply(weights_init_classifier)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.gm_pool = gm_pool
self.num_stripes = 6
local_conv_out_channels = 256
self.local_conv_list = nn.ModuleList()
for _ in range(self.num_stripes):
conv = nn.Conv2d(pool_dim, local_conv_out_channels, 1)
conv.apply(weights_init_kaiming)
self.local_conv_list.append(nn.Sequential(
conv,
nn.BatchNorm2d(local_conv_out_channels),
nn.ReLU(inplace=True)
))
self.fc_list = nn.ModuleList()
for _ in range(self.num_stripes):
fc = nn.Linear(local_conv_out_channels, class_num)
init.normal_(fc.weight, std=0.001)
init.constant_(fc.bias, 0)
self.fc_list.append(fc)
if plearn == 1:# better or worse
self.p = nn.Parameter(torch.ones(1) * 3.0)
if dataset == 'sysu':
self.p1 = self.p
else:
self.p1 = nn.Parameter(torch.ones(1) * 10.0)
elif plearn == 0:
self.p = 3.0
if dataset == 'sysu':
self.p1 = 3.0
else:
self.p1 = 10.0
self.stage = stage
self.depth = depth
self.head = head
self.graphw = graphw
self.whiten = whiten
self.gatw = gatw
self.cnn23 = Bottleneck12(inplanes=1024, planes=1024)
self.lambda1 = lambda1
if self.stage == 23:
self.vit = ViT(img_size=18 * 9, embed_dim=1024, depth=self.depth, num_heads=self.head)
self.hypergraph = HypergraphConv(theta1=theta1,edges=edge)
self.soft = nn.Softmax(dim=0)
self.gat = Graph_Attention_Union(1024, 1024, meanw=self.lambda1)
if self.whiten == 1:
self.whiten_o = whitening_scale_shift(1024, 1)
print(self.whiten)
self.fi = nn.Sequential(
nn.Conv2d(1024 * 3, 1024, 1, 1),
nn.BatchNorm2d(1024),
nn.ReLU(inplace=True),
)
self.init_weights()
def init_weights(self):
for n, m in self.named_modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
def forward(self, x1, x2, modal=0):
if modal == 0:
x1 = self.visible_module(x1)
x2 = self.thermal_module(x2)
x = torch.cat((x1, x2), 0)
elif modal == 1:
x = self.visible_module(x1)
elif modal == 2:
x = self.thermal_module(x2)
# shared block
if self.non_local == 'on':
NL1_counter = 0
if len(self.NL_1_idx) == 0: self.NL_1_idx = [-1]
for i in range(len(self.base_resnet.base.layer1)):
x = self.base_resnet.base.layer1[i](x)
if i == self.NL_1_idx[NL1_counter]:
_, C, H, W = x.shape
x = self.NL_1[NL1_counter](x)
NL1_counter += 1
# Layer 2
NL2_counter = 0
if len(self.NL_2_idx) == 0: self.NL_2_idx = [-1]
for i in range(len(self.base_resnet.base.layer2)):
x = self.base_resnet.base.layer2[i](x)
if i == self.NL_2_idx[NL2_counter]:
_, C, H, W = x.shape
x = self.NL_2[NL2_counter](x)
NL2_counter += 1
# Layer 3
NL3_counter = 0
if len(self.NL_3_idx) == 0: self.NL_3_idx = [-1]
for i in range(len(self.base_resnet.base.layer3)):
x = self.base_resnet.base.layer3[i](x)
if i == self.NL_3_idx[NL3_counter]:
_, C, H, W = x.shape
x = self.NL_3[NL3_counter](x)
NL3_counter += 1
# SLE
out_23 = x
x = self.cnn23(x)
if self.stage == 23 and self.training:
out_23_shape = out_23.shape[0]//3
temp = torch.cat((out_23[0:out_23_shape],out_23[2*out_23_shape:3*out_23_shape]), dim=0)
x_vit = self.vit(temp)
x = torch.cat((x, x_vit), dim=0)
# HSL
if self.whiten == 1:
x = x + self.graphw * self.hypergraph(self.whiten_o(x))
else:
x = x + self.graphw * self.hypergraph(x)
# CFL
if self.training:
x_shape = x.shape[0] // 5
CNN_RGB = x[0 * x_shape:1 * x_shape]
CNN_IR = x[2 * x_shape:3 * x_shape]
ViT_RGB = x[3 * x_shape:4 * x_shape]
ViT_IR = x[4 * x_shape:5 * x_shape]
GAT_CNN_RGB_ALL = self.gat(CNN_IR, CNN_RGB) + self.gat(ViT_RGB, CNN_RGB) + self.gat(ViT_IR, CNN_RGB)
GAT_CNN_IR_ALL = self.gat(CNN_RGB, CNN_IR) + self.gat(ViT_RGB, CNN_IR) + self.gat(ViT_IR, CNN_IR)
GAT_ViT_RGB_ALL = self.gat(CNN_RGB, ViT_RGB) + self.gat(CNN_IR, ViT_RGB) + self.gat(ViT_IR, ViT_RGB)
GAT_ViT_IR_ALL = self.gat(CNN_RGB, ViT_IR) + self.gat(CNN_IR, ViT_IR) + self.gat(ViT_RGB, ViT_IR)
x = torch.cat((x, self.gatw * GAT_CNN_RGB_ALL + CNN_RGB, self.gatw * GAT_CNN_IR_ALL + CNN_IR,
self.gatw * GAT_ViT_RGB_ALL + ViT_RGB, self.gatw * GAT_ViT_IR_ALL + ViT_IR), dim=0)
# Layer 4
NL4_counter = 0
if len(self.NL_4_idx) == 0: self.NL_4_idx = [-1]
for i in range(len(self.base_resnet.base.layer4)):
x = self.base_resnet.base.layer4[i](x)
if i == self.NL_4_idx[NL4_counter]:
_, C, H, W = x.shape
x = self.NL_4[NL4_counter](x)
NL4_counter += 1
else:
pass
feat = x
assert feat.size(2) % self.num_stripes == 0
stripe_h = int(feat.size(2) / self.num_stripes)
local_feat_list = []
logits_list = []
for i in range(self.num_stripes):
# shape [N, C, 1, 1]
# average pool
# local_feat = F.avg_pool2d(feat[:, :, i * stripe_h: (i + 1) * stripe_h, :],(stripe_h, feat.size(-1)))
if self.gm_pool == 'on':
# gm pool
local_feat = feat[:, :, i * stripe_h: (i + 1) * stripe_h, :]
b, c, h, w = local_feat.shape
local_feat = local_feat.view(b, c, -1)
local_feat = (torch.mean(local_feat ** self.p1, dim=-1) + 1e-12) ** (1 / self.p1)
else:
# average pool
# local_feat = F.avg_pool2d(feat[:, :, i * stripe_h: (i + 1) * stripe_h, :],(stripe_h, feat.size(-1)))
local_feat = F.max_pool2d(feat[:, :, i * stripe_h: (i + 1) * stripe_h, :],
(stripe_h, feat.size(-1)))
# shape [N, c, 1, 1]
local_feat = self.local_conv_list[i](local_feat.view(feat.size(0), feat.size(1), 1, 1))
# shape [N, c]
local_feat = local_feat.view(local_feat.size(0), -1)
local_feat_list.append(local_feat)
if hasattr(self, 'fc_list'):
logits_list.append(self.fc_list[i](local_feat))
feat_all = [lf for lf in local_feat_list]
feat_all = torch.cat(feat_all, dim=1)
## golable
if self.gm_pool == 'on':
b, c, h, w = x.shape
x = x.view(b, c, -1)
x_pool = (torch.mean(x ** self.p, dim=-1) + 1e-12) ** (1 / self.p)
else:
x_pool = self.avgpool(x)
x_pool = x_pool.view(x_pool.size(0), x_pool.size(1))
feat = self.bottleneck(x_pool)
if self.training:
temp = torch.cat((feat, feat_all), dim=1)
return x_pool, self.classifier(feat), local_feat_list, logits_list, feat_all, temp
else:
x_pool_1 = torch.cat((x_pool, feat_all), dim=1)
feat_1 = torch.cat((feat, feat_all), dim=1)
return self.l2norm(x_pool_1), self.l2norm(feat_1)
if __name__ == '__main__':
x1 = torch.Tensor(8, 3, 288, 144).cuda()
x2 = torch.Tensor(4, 3, 288, 144).cuda()
model = embed_net(class_num=100, no_local='on', gm_pool='on', stage=23, head=4, depth=2).cuda()
model(x1, x2)