在空白脚本里测试如下的代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
结果为:
Net(
(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
(fc1): Linear(in_features=400, out_features=120, bias=True)
(fc2): Linear(in_features=120, out_features=84, bias=True)
(fc3): Linear(in_features=84, out_features=10, bias=True)
)
由此可知:print(net)
打印出来的是网络实例net
的类Net
定义中的初始化函数def __init__(self):
的内容。
网络中的可学习参数是通过net.state_dict()
这个有序字典来存储的。我们在空白脚本中测试如下的代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
print("----------------------开始监视代码----------------------")
print("type(net.state_dict()):", type(net.state_dict()))
# Print model's state_dict
print("Model's state_dict:")
for param_tensor in net.state_dict():
print(param_tensor, "\t", net.state_dict()[param_tensor].size())
print("----------------------我的分割线1----------------------")
print("type(optimizer.state_dict()):", type(optimizer.state_dict()))
# Print optimizer's state_dict
print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
print(var_name, "\t", optimizer.state_dict()[var_name])
print("----------------------结束监视代码----------------------")
结果为:
----------------------开始监视代码----------------------
type(net.state_dict()): <class 'collections.OrderedDict'>
Model's state_dict:
conv1.weight torch.Size([6, 3, 5, 5])
conv1.bias torch.Size([6])
conv2.weight torch.Size([16, 6, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([84, 120])
fc2.bias torch.Size([84])
fc3.weight torch.Size([10, 84])
fc3.bias torch.Size([10])
----------------------我的分割线1----------------------
type(optimizer.state_dict()): <class 'dict'>
Optimizer's state_dict:
state {}
param_groups [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'params': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}]
----------------------结束监视代码----------------------
我们可以看到,net.state_dict()
的类型是一个有序字典。这个字典中存储了网络net
的所有可学习参数。字典的键就是每个可学习层的参数名称(在上面的例子中,就是conv1.weight
,conv1.bias
,conv2.weight
,conv2.bias
,fc1.weight
,fc1.bias
,fc2.weight
,fc2.bias
,fc3.weight
,fc3.bias
)。字典的值就是对应的参数(这些参数都是一些PyTorch张量)。
类似地,优化器的参数也是一个字典。这个字典里面保存了state
和param_groups
这两个键。
以上内容参考PyTorch状态字典教程