Shape Robust Text Detection with Progressive Scale Expansion Network
python 2.7
PyTorch v0.4.1+
pyclipper
Polygon2
OpenCV 3+ (for c++ version pse)
Progressive Scale Expansion Network (PSENet) is a text detector which is able to well detect the arbitrary-shape text in natural scene.
CUDA_VISIBLE_DEVICES=0,1,2,3 python train_ic15.py
CUDA_VISIBLE_DEVICES=0 python test_ic15.py --scale 1 --resume [path of model]
Performance (new version paper)
Method
Extra Data
Precision (%)
Recall (%)
F-measure (%)
Model
PSENet-1s (ResNet50)
-
81.49
79.68
80.57
todo
PSENet-1s (ResNet50)
pretrain on IC17 MLT
86.92
84.5
85.69
todo
PSENet-4s (ResNet50)
pretrain on IC17 MLT
86.1
83.77
84.92
todo
Performance (old version paper on arxiv)
Method
Precision (%)
Recall (%)
F-measure (%)
PSENet-4s (ResNet152)
87.98
83.87
85.88
PSENet-2s (ResNet152)
89.30
85.22
87.21
PSENet-1s (ResNet152)
88.71
85.51
87.08
Method
Precision (%)
Recall (%)
F-measure (%)
PSENet-4s (ResNet152)
75.98
67.56
71.52
PSENet-2s (ResNet152)
76.97
68.35
72.40
PSENet-1s (ResNet152)
77.01
68.40
72.45
Method
Precision (%)
Recall (%)
F-measure (%)
PSENet-4s (ResNet152)
80.49
78.13
79.29
PSENet-2s (ResNet152)
81.95
79.30
80.60
PSENet-1s (ResNet152)
82.50
79.89
81.17
Method
Precision (%)
Recall (%)
F-measure (%)
PSENet-1s (ResNet152)
78.5
72.1
75.2
Figure 3: The results on ICDAR 2015, ICDAR 2017 MLT and SCUT-CTW1500