-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_encoder.py
668 lines (562 loc) · 31.6 KB
/
graph_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
import enum
import math
import copy
import json
import torch
import collections
import pickle
import torch.nn as nn
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
class EdgeType(enum.IntEnum):
TOKEN_TO_TOKEN = 0
TOKEN_TO_SENTENCE = 1
TOKEN_TO_PARAGRAPH = 2
TOKEN_TO_DOCUMENT = 3
SENTENCE_TO_TOKEN = 4
SENTENCE_TO_SENTENCE = 5
SENTENCE_TO_PARAGRAPH = 6
SENTENCE_TO_DOCUMENT = 7
PARAGRAPH_TO_TOKEN = 8
PARAGRAPH_TO_SENTENCE = 9
PARAGRAPH_TO_PARAGRAPH = 10
PARAGRAPH_TO_DOCUMENT = 11
DOCUMENT_TO_TOKEN = 12
DOCUMENT_TO_SENTENCE = 13
DOCUMENT_TO_PARAGRAPH = 14
DOCUMENT_TO_DOCUMENT = 15
class NodeType(enum.IntEnum):
TOKEN = 0
SENTENCE = 1
PARAGRAPH = 2
DOCUMENT = 3
class NodePosition(enum.IntEnum):
MAX_PARAGRAPH = 64
MAX_SENTENCE = 128
MAX_TOKEN = 512
MAX_EVIDENCE = 24
class MetaNodePosition():
MAX_PARAGRAPH = 32
MAX_SENTENCE = 64
MAX_CHUNK = 4
def __init__(self, indoc_num=16, max_sentence=None, max_paragraph=None, max_chunk=None):
self.indoc_num = indoc_num
MetaNodePosition.MAX_SENTENCE = indoc_num * 4
MetaNodePosition.MAX_PARAGRAPH = indoc_num * 2
MetaNodePosition.MAX_CHUNK = indoc_num // 4 if indoc_num >= 4 else 1
if max_sentence is not None:
MetaNodePosition.MAX_SENTENCE = max_sentence
if max_paragraph is not None:
MetaNodePosition.MAX_PARAGRAPH = max_paragraph
if max_chunk is not None:
MetaNodePosition.MAX_CHUNK = max_chunk
class EdgePositionIndoc():
NUM_TOKEN_TO_TOKEN = 0
NUM_TOKEN_TO_SENTENCE = 64 * 16
NUM_TOKEN_TO_PARAGRAPH = 256 * 16
NUM_TOKEN_TO_DOCUMENT = 512 * 16
NUM_SENTENCE_TO_TOKEN = 64 * 16
NUM_SENTENCE_TO_SENTENCE = 0 * 16
NUM_SENTENCE_TO_PARAGRAPH = 32 * 16
NUM_SENTENCE_TO_DOCUMENT = 64 * 16
NUM_PARAGRAPH_TO_TOKEN = 256 * 16
NUM_PARAGRAPH_TO_SENTENCE = 32 * 16
NUM_PARAGRAPH_TO_PARAGRAPH = 0 * 16
NUM_PARAGRAPH_TO_DOCUMENT = 32 * 16
NUM_DOCUMENT_TO_TOKEN = 512 * 16
NUM_DOCUMENT_TO_SENTENCE = 64 * 16
NUM_DOCUMENT_TO_PARAGRAPH = 32 * 16
NUM_DOCUMENT_TO_DOCUMENT = 0 * 16
max_edge_types = [NUM_TOKEN_TO_TOKEN, NUM_TOKEN_TO_SENTENCE, NUM_TOKEN_TO_PARAGRAPH, NUM_TOKEN_TO_DOCUMENT,
NUM_SENTENCE_TO_TOKEN, NUM_SENTENCE_TO_SENTENCE, NUM_SENTENCE_TO_PARAGRAPH,
NUM_SENTENCE_TO_DOCUMENT, NUM_PARAGRAPH_TO_TOKEN, NUM_PARAGRAPH_TO_SENTENCE,
NUM_PARAGRAPH_TO_PARAGRAPH, NUM_PARAGRAPH_TO_DOCUMENT, NUM_DOCUMENT_TO_TOKEN,
NUM_DOCUMENT_TO_SENTENCE, NUM_DOCUMENT_TO_PARAGRAPH, NUM_DOCUMENT_TO_DOCUMENT]
def __init__(self, indoc_num=16):
self.indoc_num = indoc_num
EdgePositionIndoc.NUM_TOKEN_TO_TOKEN = 0
EdgePositionIndoc.NUM_TOKEN_TO_SENTENCE = 64 * indoc_num
EdgePositionIndoc.NUM_TOKEN_TO_PARAGRAPH = 256 * indoc_num
EdgePositionIndoc.NUM_TOKEN_TO_DOCUMENT = 512 * indoc_num
EdgePositionIndoc.NUM_SENTENCE_TO_TOKEN = 64 * indoc_num
EdgePositionIndoc.NUM_SENTENCE_TO_SENTENCE = 0 * indoc_num
EdgePositionIndoc.NUM_SENTENCE_TO_PARAGRAPH = 32 * indoc_num
EdgePositionIndoc.NUM_SENTENCE_TO_DOCUMENT = 64 * indoc_num
EdgePositionIndoc.NUM_PARAGRAPH_TO_TOKEN = 256 * indoc_num
EdgePositionIndoc.NUM_PARAGRAPH_TO_SENTENCE = 32 * indoc_num
EdgePositionIndoc.NUM_PARAGRAPH_TO_PARAGRAPH = 0 * indoc_num
EdgePositionIndoc.NUM_PARAGRAPH_TO_DOCUMENT = 32 * indoc_num
EdgePositionIndoc.NUM_DOCUMENT_TO_TOKEN = 512 * indoc_num
EdgePositionIndoc.NUM_DOCUMENT_TO_SENTENCE = 64 * indoc_num
EdgePositionIndoc.NUM_DOCUMENT_TO_PARAGRAPH = 32 * indoc_num
EdgePositionIndoc.NUM_DOCUMENT_TO_DOCUMENT = 0 * indoc_num
EdgePositionIndoc.edge_type_start = [0]
for edge_type in range(1, 16):
EdgePositionIndoc.edge_type_start.append(
EdgePositionIndoc.edge_type_start[edge_type - 1] + EdgePositionIndoc.max_edge_types[edge_type - 1])
EdgePositionIndoc.edge_type_start = [0]
for edge_type in range(1, 16):
EdgePositionIndoc.edge_type_start.append(
EdgePositionIndoc.edge_type_start[edge_type - 1] + EdgePositionIndoc.max_edge_types[edge_type - 1])
def get_edge_position_indoc(edge_type, edge_idx):
return EdgePositionIndoc.edge_type_start[edge_type] + min(edge_idx, EdgePositionIndoc.max_edge_types[edge_type] - 1)
class GraphIndoc(object):
def __init__(self, args):
self.indoc_num = args.indoc_num
self.max_token = self.indoc_num * args.max_indoc_token
self.max_sentence = self.indoc_num * args.max_indoc_sentence
self.max_paragraph = self.indoc_num * args.max_indoc_paragraph
self.edges_src = []
self.edges_tgt = []
self.edges_type = []
self.edges_pos = []
self.st_mask = [0] * (self.max_token + self.max_sentence + self.max_paragraph + 1)
self.st_index = [-1] * (self.max_token + self.max_sentence + self.max_paragraph + 1)
def add_node(self, idx, index=-1):
self.st_mask[idx] = 1
self.st_index[idx] = index
def add_edge(self, src, tgt, edge_type=-1, edge_pos=-1):
if src < 0 or tgt < 0:
return
assert self.st_mask[src] > 0 and self.st_mask[tgt] > 0
self.edges_src.append(src)
self.edges_tgt.append(tgt)
self.edges_type.append(edge_type)
self.edges_pos.append(edge_pos)
assert edge_pos >= 0, 'src: {}, tgt: {}, edge_type: {}, edge_pos: {}'.format(
src, tgt, edge_type, edge_pos
)
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
class Config(object):
def __init__(self, config_json_file):
with open(config_json_file, "r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-12):
"""Construct a layernorm module in the TF style (epsilon inside the square root).
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.variance_epsilon = eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
return self.weight * x + self.bias
class AttentionOutputLayer(nn.Module):
def __init__(self, config, in_dim=2):
super(AttentionOutputLayer, self).__init__()
self.dense = nn.Linear(config.hidden_size * in_dim, config.hidden_size)
self.layer_norm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(hidden_states + input_tensor)
return hidden_states
class GraphRNNIndoc(nn.Module):
def __init__(self, config):
super(GraphRNNIndoc, self).__init__()
self.birnn = nn.LSTM(config.hidden_size,
config.hidden_size // 2,
num_layers=1,
bidirectional=True,
batch_first=True)
def forward(self, hidden_states, st_mask):
flat_text_embeddings = hidden_states.view(-1, hidden_states.size(-1))
flat_text_mask = st_mask.view(-1).byte()
filtered_text_embeddings = flat_text_embeddings[flat_text_mask.bool()]
filtered_contextualized_embeddings, _ = self.birnn(filtered_text_embeddings.unsqueeze(0))
filtered_contextualized_embeddings = filtered_contextualized_embeddings.squeeze(0)
flat_contextualized_embeddings = torch.zeros((flat_text_embeddings.size(0),
filtered_contextualized_embeddings.size(-1)),
device=filtered_text_embeddings.device)
flat_contextualized_embeddings = flat_contextualized_embeddings.masked_scatter(
flat_text_mask.unsqueeze(-1).bool(), filtered_contextualized_embeddings
) # all_sequence
contextualized_embeddings = flat_contextualized_embeddings.reshape(
(hidden_states.size(0), hidden_states.size(1), flat_contextualized_embeddings.size(-1))
)
encoder_outputs = contextualized_embeddings
return encoder_outputs
class IntegrationLayer(nn.Module):
def __init__(self, config):
super(IntegrationLayer, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.num_edge_types = config.num_edge_types
def forward(self, hidden_states, edges):
edges_src, edges_tgt, edges_type, edges_pos = edges
batch_size, seq_len = hidden_states.size(0), hidden_states.size(1)
query_layer = self.query(hidden_states).view(batch_size * seq_len, self.num_attention_heads,
self.attention_head_size)
key_layer = self.key(hidden_states).view(batch_size * seq_len, self.num_attention_heads,
self.attention_head_size)
value_layer = self.value(hidden_states).view(batch_size * seq_len, self.num_attention_heads,
self.attention_head_size)
src_key_tensor = key_layer[edges_src]
tgt_query_tensor = query_layer[edges_tgt]
# (n_edges, n_heads)
attention_scores = torch.exp((tgt_query_tensor * src_key_tensor).sum(-1) / math.sqrt(self.attention_head_size))
sum_attention_scores = hidden_states.data.new(batch_size * seq_len, self.num_attention_heads).fill_(0)
indices = edges_tgt.view(-1, 1).expand(-1, self.num_attention_heads)
sum_attention_scores.scatter_add_(dim=0, index=indices, src=attention_scores)
attention_scores = attention_scores / sum_attention_scores[edges_tgt]
# (n_edges, n_heads, head_size) * (n_edges, n_heads, 1)
src_value_tensor = value_layer[edges_src]
src_value_tensor *= attention_scores.unsqueeze(-1)
output = hidden_states.data.new(
batch_size * seq_len, self.num_attention_heads, self.attention_head_size).fill_(0)
indices = edges_tgt.view(-1, 1, 1).expand(-1, self.num_attention_heads, self.attention_head_size)
output.scatter_add_(dim=0, index=indices, src=src_value_tensor)
output = output.view(batch_size, seq_len, -1)
return hidden_states, output
class MultiHeadAttention(nn.Module):
def __init__(self, input_dim, output_dim, dropout=0):
super(MultiHeadAttention, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.linear_key = nn.Linear(input_dim, output_dim)
self.linear_value = nn.Linear(input_dim, output_dim)
self.linear_query = nn.Linear(input_dim, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, head_num, mask=None):
'''
q/k/v:
mask: batch_size, q_len, k_len
'''
# [batch_size, steps, head_num, per_head_dim]
batch_size = query.shape[0]
q_len = query.shape[1]
k_len = key.shape[1]
v_len = value.shape[1]
per_head_dim = self.output_dim // head_num
query_ = self.linear_query(query)
key_ = self.linear_key(key)
value_ = self.linear_value(value)
query_ = torch.reshape(query_, (batch_size, head_num, q_len, per_head_dim))
key_ = torch.reshape(key_, (batch_size, head_num, per_head_dim, k_len))
value_ = torch.reshape(value_, (batch_size, head_num, v_len, per_head_dim))
score = torch.matmul(query_, key_) # batch_size, head_num, q_len, k_len
if mask is not None: # [batch_size, seq_len]
mask_score = torch.reshape(mask.float(), (batch_size, 1, 1, -1))
mask_score = (1 - mask_score.float()) * -99999.0
score = mask_score + score
score = torch.nn.functional.softmax(score, -1)
score = self.dropout(score) # strange dropout in Transformer
outs = torch.matmul(score, value_) # batch_size, head_num, q_len, per_head_dim
outs = torch.transpose(outs, 1, 2)
outs = torch.reshape(outs, (batch_size, q_len, head_num * per_head_dim))
return outs
class MetaGraphAttention(nn.Module):
def __init__(self, config):
super(MetaGraphAttention, self).__init__()
self.memory_output = AttentionOutputLayer(config)
self.hidden_size = config.hidden_size
self.gat_head_num = 6
self.gat_dropout = 0.1
self.hops = config.meta_gat_hops if config.meta_gat_hops is not None else 1
self.meta_attn_graph = MultiHeadAttention(
input_dim=self.hidden_size, output_dim=self.hidden_size, dropout=self.gat_dropout
)
def forward(self, meta_hiddens):
node_types = [NodeType.SENTENCE, NodeType.PARAGRAPH, NodeType.DOCUMENT]
meta_node_starts = [0, MetaNodePosition.MAX_SENTENCE, MetaNodePosition.MAX_SENTENCE + MetaNodePosition.MAX_PARAGRAPH]
meta_node_lens = [MetaNodePosition.MAX_SENTENCE, MetaNodePosition.MAX_PARAGRAPH, MetaNodePosition.MAX_CHUNK]
memory_outputs = [meta_hiddens]
for hop_idx in range(self.hops):
metas_src2tgt_g = [None for _ in node_types]
metas_tgt2src_g = [None for _ in node_types]
for node_idx, node_type in enumerate(node_types):
src_node_idx = node_idx
tgt_node_idx = node_idx + 1 if node_idx + 1 < len(node_types) else 0
src_node_start = meta_node_starts[src_node_idx]
src_node_len = meta_node_lens[src_node_idx]
tgt_node_start = meta_node_starts[tgt_node_idx]
tgt_node_len = meta_node_lens[tgt_node_idx]
meta_src2tgt_g = self.meta_attn_graph(meta_hiddens[:, tgt_node_start: tgt_node_start + tgt_node_len, :],
memory_outputs[-1][:, src_node_start: src_node_start + src_node_len, :],
memory_outputs[-1][:, src_node_start: src_node_start + src_node_len, :],
self.gat_head_num)
meta_tgt2src_g = self.meta_attn_graph(meta_hiddens[:, src_node_start: src_node_start + src_node_len, :],
memory_outputs[-1][:, tgt_node_start: tgt_node_start + tgt_node_len, :],
memory_outputs[-1][:, tgt_node_start: tgt_node_start + tgt_node_len, :],
self.gat_head_num)
metas_src2tgt_g[tgt_node_idx] = meta_src2tgt_g
metas_tgt2src_g[src_node_idx] = meta_tgt2src_g
metas_src2tgt_g = torch.cat(metas_src2tgt_g, dim=-2)
metas_tgt2src_g = torch.cat(metas_tgt2src_g, dim=-2)
memory_g = torch.cat([metas_src2tgt_g, metas_tgt2src_g], dim=-1)
memory_output = self.memory_output(memory_g, memory_outputs[-1])
memory_outputs.append(memory_output)
return memory_outputs[-1]
class MetaNodeInteractionLayerV2Indoc(nn.Module):
def __init__(self, config):
super(MetaNodeInteractionLayerV2Indoc, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.memory_slots = MetaNodePosition.MAX_SENTENCE + MetaNodePosition.MAX_PARAGRAPH \
+ MetaNodePosition.MAX_CHUNK
self.memory_dim = config.hidden_size
self.memory_hops = config.memory_hops
self.hidden_size = config.hidden_size
self.meta_graph_attention = MetaGraphAttention(config)
self.gat_head_num = 6
self.gat_dropout = 0.1
self.initial_memory = nn.Parameter(torch.normal(mean=0,
std=1,
size=(self.memory_slots,
self.memory_dim)))
self.attn_graph = MultiHeadAttention(
input_dim=self.hidden_size, output_dim=self.hidden_size, dropout=self.gat_dropout
)
self.hidden_output = AttentionOutputLayer(config)
self.mem_merge = nn.Sequential(collections.OrderedDict([
('converter_dense_0', torch.nn.Linear(self.hidden_size * 2, self.hidden_size)),
('converter_tanh_0', torch.nn.Tanh())
]))
self.u_gate = nn.Sequential(collections.OrderedDict([
('u_dense_0', torch.nn.Linear(self.hidden_size * 2, 1)),
('u_sigmoid_0', torch.nn.Sigmoid())
]))
def forward(self, hidden_states, meta_hiddens, graph_attention_mask, cur_config):
max_token = cur_config['max_token']
max_sentence = cur_config['max_sentence']
sentence_start = cur_config['sentence_start']
max_paragraph = cur_config['max_paragraph']
batch_size = hidden_states.size(0)
if meta_hiddens is None:
meta_hiddens = self.initial_memory.unsqueeze(0).repeat(batch_size, 1, 1)
graph_states = [(hidden_states, meta_hiddens), ]
node_types = [NodeType.SENTENCE, NodeType.PARAGRAPH, NodeType.DOCUMENT]
node_starts = [sentence_start, sentence_start + max_sentence,
sentence_start + max_sentence + max_paragraph]
node_lens = [max_sentence, max_paragraph, 1]
meta_node_starts = [0, MetaNodePosition.MAX_SENTENCE, MetaNodePosition.MAX_SENTENCE + MetaNodePosition.MAX_PARAGRAPH]
meta_node_lens = [MetaNodePosition.MAX_SENTENCE, MetaNodePosition.MAX_PARAGRAPH, MetaNodePosition.MAX_CHUNK]
for i in range(self.memory_hops):
parts_hidden_states_g = []
parts_hidden_states_g.append(torch.zeros_like(graph_states[i][0][:, 0: sentence_start, :]))
parts_memory_g = []
for node_type, node_start, node_len, meta_node_start, meta_node_len in \
zip(node_types, node_starts, node_lens, meta_node_starts, meta_node_lens):
with torch.no_grad():
graph_node_start = node_start - sentence_start
part_memory_g = self.attn_graph(graph_states[i][1][:, meta_node_start: meta_node_start + meta_node_len, :],
graph_states[i][0][:, node_start: node_start + node_len, :],
graph_states[i][0][:, node_start: node_start + node_len, :],
self.gat_head_num,
mask=graph_attention_mask[:, graph_node_start: graph_node_start + node_len])
parts_memory_g.append(part_memory_g)
memory_g = torch.cat(parts_memory_g, dim=-2)
mem_combined = torch.cat([meta_hiddens, memory_g], dim=-1)
h_prime = self.mem_merge(mem_combined)
z = self.u_gate(mem_combined)
h_present = (1 - z) * meta_hiddens + z * h_prime
memory_output = h_present
memory_gat = self.meta_graph_attention(memory_output)
for node_type, node_start, node_len, meta_node_start, meta_node_len in \
zip(node_types, node_starts, node_lens, meta_node_starts, meta_node_lens):
part_hidden_states_g = self.attn_graph(graph_states[i][0][:, node_start: node_start + node_len, :],
memory_gat[:, meta_node_start: meta_node_start + meta_node_len, :],
memory_gat[:, meta_node_start: meta_node_start + meta_node_len, :],
self.gat_head_num)
parts_hidden_states_g.append(part_hidden_states_g)
hidden_states_g = torch.cat(parts_hidden_states_g, dim=-2)
graph_states.append((hidden_states_g, memory_output))
hidden_states_g = graph_states[-1][0]
memory_output = graph_states[-1][1]
merge_hidden_states = torch.cat([hidden_states, hidden_states_g], -1)
hidden_output = self.hidden_output(merge_hidden_states, hidden_states)
return hidden_output, memory_output
class MetaGraphAttentionLayerIndoc(nn.Module):
def __init__(self, config):
super(MetaGraphAttentionLayerIndoc, self).__init__()
self.token_attention = GraphRNNIndoc(config)
self.sentence_attention = GraphRNNIndoc(config)
self.paragraph_attention = GraphRNNIndoc(config)
self.output_layer = AttentionOutputLayer(config, in_dim=1)
self.config = config
self.integration = IntegrationLayer(config)
self.meta_integration = MetaNodeInteractionLayerV2Indoc(config)
self.output = AttentionOutputLayer(config, in_dim=1)
def forward(self, input_tensor, meta_hiddens, graph_attention_mask, st_mask, edges, segment_ids,
cur_config):
# input_tensor: [1, (max_indoc_token + max_indoc_sent + max_indoc_para) * indoc_num + 1]
max_token = cur_config['max_token']
max_sentence = cur_config['max_sentence']
sentence_start = cur_config['sentence_start']
max_paragraph = cur_config['max_paragraph']
batch_size = st_mask.size(0)
assert batch_size == 1
hidden_size = input_tensor.size(-1)
chunk_tensor = input_tensor[:, -1:, :]
_input_tensor = input_tensor[:, :-1, :]
_input_tensor = _input_tensor.view(batch_size, -1, hidden_size)
_segment_ids = segment_ids.view(1, -1)
assert _segment_ids.size(1) == max_token
token_mask = torch.logical_and(st_mask[:, :max_token].bool(), _segment_ids.bool())
token_output = self.token_attention(_input_tensor[:, :max_token, :], token_mask)
sent_start = sentence_start
sent_end = sent_start + max_sentence
sentence_output = self.sentence_attention(_input_tensor[:, sent_start:sent_end, :],
st_mask[:, sent_start:sent_end])
para_start = sent_end
para_end = sent_end + max_paragraph
paragraph_output = self.paragraph_attention(_input_tensor[:, para_start:para_end, :],
st_mask[:, para_start:para_end])
hiddens_output = torch.cat([token_output, _input_tensor[:, max_token: sentence_start, :],
sentence_output, paragraph_output, chunk_tensor], dim=1)
meta_hiddens_output = None
for _ in range(self.config.neighborhops):
hiddens, output = self.integration(hiddens_output, edges)
hiddens_output = self.output_layer(hidden_states=output, input_tensor=hiddens)
hiddens_output = self.output(hiddens_output, input_tensor)
hiddens_output, meta_hiddens_output = self.meta_integration(hidden_states=hiddens_output,
meta_hiddens=meta_hiddens,
graph_attention_mask=graph_attention_mask,
cur_config=cur_config)
return hiddens_output, meta_hiddens_output
class IntermediateLayer(nn.Module):
def __init__(self, config):
super(IntermediateLayer, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class OutputLayer(nn.Module):
def __init__(self, config):
super(OutputLayer, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.layer_norm = LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(hidden_states + input_tensor)
return hidden_states
class MetaEncoderLayerIndoc(nn.Module):
def __init__(self, config):
super(MetaEncoderLayerIndoc, self).__init__()
self.attention = MetaGraphAttentionLayerIndoc(config)
self.intermediate = IntermediateLayer(config)
self.output = OutputLayer(config)
def forward(self, hidden_states, meta_hiddens, graph_attention_mask, st_mask, edges, segment_ids,
cur_config):
attention_output, meta_hiddens = self.attention(input_tensor=hidden_states,
meta_hiddens=meta_hiddens,
graph_attention_mask=graph_attention_mask,
st_mask=st_mask, edges=edges,
segment_ids=segment_ids,
cur_config=cur_config)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
layer_output = attention_output
return layer_output, meta_hiddens
class MetaEncoderIndoc(nn.Module):
def __init__(self, config):
super(MetaEncoderIndoc, self).__init__()
self.initializer = InitializerIndoc(config)
layer = MetaEncoderLayerIndoc(config)
self.config = config
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
def forward(self, hidden_states, meta_hiddens, graph_attention_mask, st_mask,
edges, segment_ids, cur_config, output_all_encoded_layers=True):
# return: hidden_states [1, (max_indoc_token + max_indoc_sent + max_indoc_para) * indoc_num + 1]
hidden_states = self.initializer(hidden_states, st_mask, edges, cur_config)
all_encoder_layers = []
all_meta_hiddens = []
for layer_module in self.layer:
hidden_states, meta_hiddens = layer_module(hidden_states=hidden_states,
meta_hiddens=meta_hiddens,
graph_attention_mask=graph_attention_mask,
st_mask=st_mask, edges=edges,
segment_ids=segment_ids,
cur_config=cur_config)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_meta_hiddens.append(meta_hiddens)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
all_meta_hiddens.append(meta_hiddens)
return all_encoder_layers, all_meta_hiddens
class InitializerIndoc(nn.Module):
def __init__(self, config):
super(InitializerIndoc, self).__init__()
self.max_indoc_token = config.max_indoc_token_len
max_sentence = config.max_indoc_sentence_len * config.indoc_num
max_paragraph = config.max_indoc_paragraph_len * config.indoc_num
self.position_embeddings = nn.Embedding(max_sentence + max_paragraph + 1,
config.hidden_size)
self.config = config
def forward(self, hidden_states, st_mask, edges, cur_config):
# st_mask: [1, max_seq_len * indoc_num + indoc_num + 1]
hidden_states = hidden_states.reshape(1, -1, hidden_states.size(-1))
max_token = cur_config['max_token']
max_sentence = cur_config['max_sentence']
sentence_start = cur_config['sentence_start']
max_paragraph = cur_config['max_paragraph']
st_mask = st_mask.view(1, -1)
edges_src, edges_tgt, edges_type, edges_pos = edges
graph_hidden = hidden_states.data.new(st_mask.size(0), st_mask.size(1), hidden_states.size(2)).fill_(0)
graph_hidden[:, :max_token, :] = hidden_states
mask = st_mask[:, sentence_start:].eq(1).unsqueeze(-1)
# Update by TOKEN_TO_SENTENCE
indices_t2s = edges_type.eq(EdgeType.TOKEN_TO_SENTENCE).nonzero().view(-1).tolist()
graph_hidden = self.average_pooling(graph_hidden, edges_src[indices_t2s], edges_tgt[indices_t2s])
para_start = sentence_start + max_sentence
para_end = para_start + max_paragraph
if 'para_vecs' in cur_config:
para_end = para_start + cur_config['para_vecs'].size(0)
graph_hidden[:, para_start: para_end, :] = graph_hidden[:, : sentence_start: self.max_indoc_token, :].detach() \
if 'para_vecs' not in cur_config else cur_config['para_vecs'].detach()
# Update by PARAGRAPH_TO_DOCUMENT
indices_p2d = edges_type.eq(EdgeType.PARAGRAPH_TO_DOCUMENT).nonzero().view(-1).tolist()
graph_hidden = self.average_pooling(graph_hidden, edges_src[indices_p2d], edges_tgt[indices_p2d])
return graph_hidden
@classmethod
def average_pooling(cls, graph_hidden, edges_src, edges_tgt):
batch_size, n_nodes, hidden_size = graph_hidden.size()
graph_hidden = graph_hidden.view(batch_size * n_nodes, hidden_size)
src_tensor = graph_hidden[edges_src]
indices = edges_tgt.view(-1, 1).expand(-1, hidden_size)
# indices: [tgt_node_num, hidden_size]
sum_hidden = graph_hidden.clone().fill_(0)
sum_hidden.scatter_add_(dim=0, index=indices, src=src_tensor)
n_edges = graph_hidden.data.new(batch_size * n_nodes).fill_(0)
n_edges.scatter_add_(dim=0, index=edges_tgt, src=torch.ones_like(edges_tgt).float())
indices = n_edges.nonzero().view(-1)
graph_hidden[indices] += sum_hidden[indices] / n_edges[indices].unsqueeze(-1)
return graph_hidden.view(batch_size, n_nodes, hidden_size)