-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmake_recon_figure_ffhq_real.py
154 lines (122 loc) · 5.12 KB
/
make_recon_figure_ffhq_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright 2019-2020 Stanislav Pidhorskyi
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import torch.utils.data
from torchvision.utils import save_image
from net import *
from model import Model
from launcher import run
from checkpointer import Checkpointer
from dlutils.pytorch import count_parameters
from defaults import get_cfg_defaults
import lreq
from dataloader import *
lreq.use_implicit_lreq.set(True)
def place(canvas, image, x, y):
im_size = image.shape[2]
if len(image.shape) == 4:
image = image[0]
canvas[:, y: y + im_size, x: x + im_size] = image * 0.5 + 0.5
def save_sample(model, sample, i):
os.makedirs('results', exist_ok=True)
with torch.no_grad():
model.eval()
x_rec = model.generate(model.generator.layer_count - 1, 1, z=sample)
def save_pic(x_rec):
resultsample = x_rec * 0.5 + 0.5
resultsample = resultsample.cpu()
save_image(resultsample,
'sample_%i_lr.png' % i, nrow=16)
save_pic(x_rec)
def sample(cfg, logger):
torch.cuda.set_device(0)
model = Model(
startf=cfg.MODEL.START_CHANNEL_COUNT,
layer_count=cfg.MODEL.LAYER_COUNT,
maxf=cfg.MODEL.MAX_CHANNEL_COUNT,
latent_size=cfg.MODEL.LATENT_SPACE_SIZE,
truncation_psi=cfg.MODEL.TRUNCATIOM_PSI,
truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF,
mapping_layers=cfg.MODEL.MAPPING_LAYERS,
channels=cfg.MODEL.CHANNELS,
generator=cfg.MODEL.GENERATOR,
encoder=cfg.MODEL.ENCODER)
model.cuda(0)
model.eval()
model.requires_grad_(False)
decoder = model.decoder
encoder = model.encoder
mapping_tl = model.mapping_d
mapping_fl = model.mapping_f
dlatent_avg = model.dlatent_avg
logger.info("Trainable parameters generator:")
count_parameters(decoder)
logger.info("Trainable parameters discriminator:")
count_parameters(encoder)
arguments = dict()
arguments["iteration"] = 0
model_dict = {
'discriminator_s': encoder,
'generator_s': decoder,
'mapping_tl_s': mapping_tl,
'mapping_fl_s': mapping_fl,
'dlatent_avg': dlatent_avg
}
checkpointer = Checkpointer(cfg,
model_dict,
{},
logger=logger,
save=False)
extra_checkpoint_data = checkpointer.load()
model.eval()
layer_count = cfg.MODEL.LAYER_COUNT
def encode(x):
Z, _ = model.encode(x, layer_count - 1, 1)
Z = Z.repeat(1, model.mapping_f.num_layers, 1)
return Z
def decode(x):
layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis]
ones = torch.ones(layer_idx.shape, dtype=torch.float32)
coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones)
# x = torch.lerp(model.dlatent_avg.buff.data, x, coefs)
return model.decoder(x, layer_count - 1, 1, noise=True)
rnd = np.random.RandomState(5)
latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE)
dataset = TFRecordsDataset(cfg, logger, rank=0, world_size=1, buffer_size_mb=10, channels=cfg.MODEL.CHANNELS, train=False)
dataset.reset(cfg.DATASET.MAX_RESOLUTION_LEVEL, 10)
b = iter(make_dataloader(cfg, logger, dataset, 10, 0, numpy=True))
def make(sample):
canvas = []
with torch.no_grad():
for img in sample:
x = torch.tensor(np.asarray(img, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1.
if x.shape[0] == 4:
x = x[:3]
latents = encode(x[None, ...].cuda())
f = decode(latents)
r = torch.cat([x[None, ...].detach().cpu(), f.detach().cpu()], dim=3)
canvas.append(r)
return canvas
sample = next(b)
canvas = make(sample)
canvas = torch.cat(canvas, dim=0)
save_image(canvas * 0.5 + 0.5, 'make_figures/reconstructions_ffhq_real_1.png', nrow=2, pad_value=1.0)
sample = next(b)
canvas = make(sample)
canvas = torch.cat(canvas, dim=0)
save_image(canvas * 0.5 + 0.5, 'make_figures/reconstructions_ffhq_real_2.png', nrow=2, pad_value=1.0)
if __name__ == "__main__":
gpu_count = 1
run(sample, get_cfg_defaults(), description='ALAE-reconstruction-ffhq', default_config='configs/ffhq.yaml',
world_size=gpu_count, write_log=False)