Skip to content

Latest commit

 

History

History
67 lines (48 loc) · 1.81 KB

README.md

File metadata and controls

67 lines (48 loc) · 1.81 KB

Self-supervised Domain Adaptation

Repository for the paper "Self-supervised Domain adaptation for Computer Vision Tasks".

@article{self-supervised-da:2019,
  title={Self-supervised Domain Adaptation for Computer Vision Tasks},
  author={Jiaolong, Xu and Liang, Xiao and Antonio M. López},
  journal={IEEE Access},
  volume={7},
  pages={156694-156706}
  year={2019}
}

Requirements

  • python3.5+

  • pytorch 1.0+

Prepare dataset

Please find the PACS dataset from this link

The directories of the dataset are as following:

.
├── datasets
│   └── PACS
│       └── kfold
│           ├── art_painting
│           ├── cartoon
│           ├── photo
│           └── sketch

Running experiments

The configuration files for each experiment can be found at config/ folder.

For example:

python3 main.py --config configs/rotate_pacs_photo.yaml

To reproduce the results, running each experiment for three repeatitions with random seeds from 100, 200 and 300.

Results

Method art paint. cartoon sketches photo Avg.
SRC[1] 77.85 74.86 67.74 95.73 79.05
JigGen[1] 84.88 81.07 79.05 97.96 85.74
Ours(SRC) 79.33 76.75 64.40 96.39 79.22
Ours(Jigsaw) 84.93 83.85 69.04 93.92 82.94
Ours(Rot) 89.35 84.14 74.49 98.24 86.56

Acknowledgement

Thanks for the open source of JigGen for reference implementation!

References

[1] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization by solving jigsaw puzzles. In CVPR, 2019.