forked from microsoft/onnxruntime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
c_api_sample.rs
395 lines (341 loc) · 15 KB
/
c_api_sample.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#![allow(non_snake_case)]
use std::env::args;
#[cfg(not(target_family = "windows"))]
use std::os::unix::ffi::OsStrExt;
#[cfg(target_family = "windows")]
use std::os::windows::ffi::OsStrExt;
use onnxruntime_sys::{
onnxruntime, GraphOptimizationLevel, ONNXTensorElementDataType, OrtAllocator, OrtAllocatorType,
OrtApi, OrtEnv, OrtLoggingLevel, OrtMemType, OrtMemoryInfo, OrtRunOptions, OrtSession,
OrtSessionOptions, OrtStatus, OrtTensorTypeAndShapeInfo, OrtTypeInfo, OrtValue,
ORT_API_VERSION,
};
// https://github.com/microsoft/onnxruntime/blob/v1.4.0/csharp/test/Microsoft.ML.OnnxRuntime.EndToEndTests.Capi/C_Api_Sample.cpp
fn main() {
let onnxruntime_path = args()
.nth(1)
.expect("This example expects a path to the ONNXRuntime shared library");
let (_, g_ort) = unsafe {
let ort = onnxruntime::new(onnxruntime_path);
let ort = ort.expect("Error initializing onnxruntime");
let g_ort = ort.OrtGetApiBase().as_ref().unwrap().GetApi.unwrap()(ORT_API_VERSION);
(ort, g_ort)
};
assert_ne!(g_ort, std::ptr::null_mut());
//*************************************************************************
// initialize enviroment...one enviroment per process
// enviroment maintains thread pools and other state info
let mut env_ptr: *mut OrtEnv = std::ptr::null_mut();
let env_name = std::ffi::CString::new("test").unwrap();
let status = unsafe {
g_ort.as_ref().unwrap().CreateEnv.unwrap()(
OrtLoggingLevel::ORT_LOGGING_LEVEL_VERBOSE,
env_name.as_ptr(),
&mut env_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(env_ptr, std::ptr::null_mut());
// initialize session options if needed
let mut session_options_ptr: *mut OrtSessionOptions = std::ptr::null_mut();
let status =
unsafe { g_ort.as_ref().unwrap().CreateSessionOptions.unwrap()(&mut session_options_ptr) };
CheckStatus(g_ort, status).unwrap();
unsafe { g_ort.as_ref().unwrap().SetIntraOpNumThreads.unwrap()(session_options_ptr, 1) };
assert_ne!(session_options_ptr, std::ptr::null_mut());
// Sets graph optimization level
unsafe {
g_ort
.as_ref()
.unwrap()
.SetSessionGraphOptimizationLevel
.unwrap()(
session_options_ptr,
GraphOptimizationLevel::ORT_ENABLE_BASIC,
)
};
// Optionally add more execution providers via session_options
// E.g. for CUDA include cuda_provider_factory.h and uncomment the following line:
// OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
//*************************************************************************
// create session and load model into memory
// NOTE: Original C version loaded SqueezeNet 1.0 (ONNX version: 1.3, Opset version: 8,
// https://github.com/onnx/models/blob/main/vision/classification/squeezenet/model/squeezenet1.0-8.onnx)
// Download it:
// curl -LO "https://github.com/onnx/models/raw/main/vision/classification/squeezenet/model/squeezenet1.0-8.onnx"
// Reference: https://github.com/onnx/models/tree/main/vision/classification/squeezenet#model
let model_path = std::ffi::OsString::from("squeezenet1.0-8.onnx");
#[cfg(target_family = "windows")]
let model_path: Vec<u16> = model_path
.encode_wide()
.chain(std::iter::once(0)) // Make sure we have a null terminated string
.collect();
#[cfg(not(target_family = "windows"))]
let model_path: Vec<std::os::raw::c_char> = model_path
.as_bytes()
.iter()
.chain(std::iter::once(&b'\0')) // Make sure we have a null terminated string
.map(|b| *b as std::os::raw::c_char)
.collect();
let mut session_ptr: *mut OrtSession = std::ptr::null_mut();
println!("Using Onnxruntime C API");
let status = unsafe {
g_ort.as_ref().unwrap().CreateSession.unwrap()(
env_ptr,
model_path.as_ptr(),
session_options_ptr,
&mut session_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(session_ptr, std::ptr::null_mut());
//*************************************************************************
// print model input layer (node names, types, shape etc.)
// size_t num_input_nodes;
let mut allocator_ptr: *mut OrtAllocator = std::ptr::null_mut();
let status = unsafe {
g_ort
.as_ref()
.unwrap()
.GetAllocatorWithDefaultOptions
.unwrap()(&mut allocator_ptr)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(allocator_ptr, std::ptr::null_mut());
// print number of model input nodes
let mut num_input_nodes: usize = 0;
let status = unsafe {
g_ort.as_ref().unwrap().SessionGetInputCount.unwrap()(session_ptr, &mut num_input_nodes)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(num_input_nodes, 0);
println!("Number of inputs = {:?}", num_input_nodes);
let mut input_node_names: Vec<&str> = Vec::new();
let mut input_node_dims: Vec<i64> = Vec::new(); // simplify... this model has only 1 input node {1, 3, 224, 224}.
// Otherwise need vector<vector<>>
// iterate over all input nodes
for i in 0..num_input_nodes {
// print input node names
let mut input_name: *mut i8 = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().SessionGetInputName.unwrap()(
session_ptr,
i,
allocator_ptr,
&mut input_name,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(input_name, std::ptr::null_mut());
// WARNING: The C function SessionGetInputName allocates memory for the string.
// We cannot let Rust free that string, the C side must free the string.
// We thus convert the pointer to a string slice (&str).
let input_name = char_p_to_str(input_name).unwrap();
println!("Input {} : name={}", i, input_name);
input_node_names.push(input_name);
// print input node types
let mut typeinfo_ptr: *mut OrtTypeInfo = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().SessionGetInputTypeInfo.unwrap()(
session_ptr,
i,
&mut typeinfo_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(typeinfo_ptr, std::ptr::null_mut());
let mut tensor_info_ptr: *const OrtTensorTypeAndShapeInfo = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().CastTypeInfoToTensorInfo.unwrap()(
typeinfo_ptr,
&mut tensor_info_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(tensor_info_ptr, std::ptr::null_mut());
let mut type_: ONNXTensorElementDataType =
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED;
let status = unsafe {
g_ort.as_ref().unwrap().GetTensorElementType.unwrap()(tensor_info_ptr, &mut type_)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(
type_,
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_UNDEFINED
);
println!("Input {} : type={}", i, type_ as i32);
// print input shapes/dims
let mut num_dims = 0;
let status = unsafe {
g_ort.as_ref().unwrap().GetDimensionsCount.unwrap()(tensor_info_ptr, &mut num_dims)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(num_dims, 0);
println!("Input {} : num_dims={}", i, num_dims);
input_node_dims.resize_with(num_dims as usize, Default::default);
let status = unsafe {
g_ort.as_ref().unwrap().GetDimensions.unwrap()(
tensor_info_ptr,
input_node_dims.as_mut_ptr(),
num_dims,
)
};
CheckStatus(g_ort, status).unwrap();
for j in 0..num_dims {
println!("Input {} : dim {}={}", i, j, input_node_dims[j as usize]);
}
unsafe { g_ort.as_ref().unwrap().ReleaseTypeInfo.unwrap()(typeinfo_ptr) };
}
// Results should be...
// Number of inputs = 1
// Input 0 : name = data_0
// Input 0 : type = 1
// Input 0 : num_dims = 4
// Input 0 : dim 0 = 1
// Input 0 : dim 1 = 3
// Input 0 : dim 2 = 224
// Input 0 : dim 3 = 224
//*************************************************************************
// Similar operations to get output node information.
// Use OrtSessionGetOutputCount(), OrtSessionGetOutputName()
// OrtSessionGetOutputTypeInfo() as shown above.
//*************************************************************************
// Score the model using sample data, and inspect values
let input_tensor_size = 224 * 224 * 3; // simplify ... using known dim values to calculate size
// use OrtGetTensorShapeElementCount() to get official size!
let output_node_names = &["softmaxout_1"];
// initialize input data with values in [0.0, 1.0]
let mut input_tensor_values: Vec<f32> = (0..input_tensor_size)
.map(|i| (i as f32) / ((input_tensor_size + 1) as f32))
.collect();
// create input tensor object from data values
let mut memory_info_ptr: *mut OrtMemoryInfo = std::ptr::null_mut();
let status = unsafe {
g_ort.as_ref().unwrap().CreateCpuMemoryInfo.unwrap()(
OrtAllocatorType::OrtArenaAllocator,
OrtMemType::OrtMemTypeDefault,
&mut memory_info_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(memory_info_ptr, std::ptr::null_mut());
// FIXME: Check me!
let mut input_tensor_ptr: *mut OrtValue = std::ptr::null_mut();
let input_tensor_ptr_ptr: *mut *mut OrtValue = &mut input_tensor_ptr;
let input_tensor_values_ptr: *mut std::ffi::c_void =
input_tensor_values.as_mut_ptr().cast::<std::ffi::c_void>();
assert_ne!(input_tensor_values_ptr, std::ptr::null_mut());
let shape: *const i64 = input_node_dims.as_ptr();
assert_ne!(shape, std::ptr::null_mut());
let status = unsafe {
g_ort
.as_ref()
.unwrap()
.CreateTensorWithDataAsOrtValue
.unwrap()(
memory_info_ptr,
input_tensor_values_ptr,
input_tensor_size * std::mem::size_of::<f32>(),
shape,
4,
ONNXTensorElementDataType::ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT,
input_tensor_ptr_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(input_tensor_ptr, std::ptr::null_mut());
let mut is_tensor = 0;
let status =
unsafe { g_ort.as_ref().unwrap().IsTensor.unwrap()(input_tensor_ptr, &mut is_tensor) };
CheckStatus(g_ort, status).unwrap();
assert_eq!(is_tensor, 1);
let input_tensor_ptr2: *const OrtValue = input_tensor_ptr as *const OrtValue;
let input_tensor_ptr3: *const *const OrtValue = &input_tensor_ptr2;
unsafe { g_ort.as_ref().unwrap().ReleaseMemoryInfo.unwrap()(memory_info_ptr) };
// score model & input tensor, get back output tensor
let input_node_names_cstring: Vec<std::ffi::CString> = input_node_names
.into_iter()
.map(|n| std::ffi::CString::new(n).unwrap())
.collect();
let input_node_names_ptr: Vec<*const i8> = input_node_names_cstring
.into_iter()
.map(|n| n.into_raw() as *const i8)
.collect();
let input_node_names_ptr_ptr: *const *const i8 = input_node_names_ptr.as_ptr();
let output_node_names_cstring: Vec<std::ffi::CString> = output_node_names
.iter()
.map(|n| std::ffi::CString::new(n.clone()).unwrap())
.collect();
let output_node_names_ptr: Vec<*const i8> = output_node_names_cstring
.iter()
.map(|n| n.as_ptr().cast::<i8>())
.collect();
let output_node_names_ptr_ptr: *const *const i8 = output_node_names_ptr.as_ptr();
let _input_node_names_cstring =
unsafe { std::ffi::CString::from_raw(input_node_names_ptr[0] as *mut i8) };
let run_options_ptr: *const OrtRunOptions = std::ptr::null();
let mut output_tensor_ptr: *mut OrtValue = std::ptr::null_mut();
let output_tensor_ptr_ptr: *mut *mut OrtValue = &mut output_tensor_ptr;
let status = unsafe {
g_ort.as_ref().unwrap().Run.unwrap()(
session_ptr,
run_options_ptr,
input_node_names_ptr_ptr,
input_tensor_ptr3,
1,
output_node_names_ptr_ptr,
1,
output_tensor_ptr_ptr,
)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(output_tensor_ptr, std::ptr::null_mut());
let mut is_tensor = 0;
let status =
unsafe { g_ort.as_ref().unwrap().IsTensor.unwrap()(output_tensor_ptr, &mut is_tensor) };
CheckStatus(g_ort, status).unwrap();
assert_eq!(is_tensor, 1);
// Get pointer to output tensor float values
let mut floatarr: *mut f32 = std::ptr::null_mut();
let floatarr_ptr: *mut *mut f32 = &mut floatarr;
let floatarr_ptr_void: *mut *mut std::ffi::c_void =
floatarr_ptr.cast::<*mut std::ffi::c_void>();
let status = unsafe {
g_ort.as_ref().unwrap().GetTensorMutableData.unwrap()(output_tensor_ptr, floatarr_ptr_void)
};
CheckStatus(g_ort, status).unwrap();
assert_ne!(floatarr, std::ptr::null_mut());
assert!((unsafe { *floatarr.offset(0) } - 0.000_045).abs() < 1e-6);
// score the model, and print scores for first 5 classes
// NOTE: The C ONNX Runtime allocated the array, we shouldn't drop the vec
// but let C de-allocate instead.
let floatarr_vec: Vec<f32> = unsafe { Vec::from_raw_parts(floatarr, 5, 5) };
for i in 0..5 {
println!("Score for class [{}] = {}", i, floatarr_vec[i]);
}
std::mem::forget(floatarr_vec);
// Results should be as below...
// Score for class[0] = 0.000045
// Score for class[1] = 0.003846
// Score for class[2] = 0.000125
// Score for class[3] = 0.001180
// Score for class[4] = 0.001317
unsafe { g_ort.as_ref().unwrap().ReleaseValue.unwrap()(output_tensor_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseValue.unwrap()(input_tensor_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseSession.unwrap()(session_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseSessionOptions.unwrap()(session_options_ptr) };
unsafe { g_ort.as_ref().unwrap().ReleaseEnv.unwrap()(env_ptr) };
println!("Done!");
}
fn CheckStatus(g_ort: *const OrtApi, status: *const OrtStatus) -> Result<(), String> {
if status != std::ptr::null() {
let raw = unsafe { g_ort.as_ref().unwrap().GetErrorMessage.unwrap()(status) };
Err(char_p_to_str(raw).unwrap().to_string())
} else {
Ok(())
}
}
fn char_p_to_str<'a>(raw: *const i8) -> Result<&'a str, std::str::Utf8Error> {
let c_str = unsafe { std::ffi::CStr::from_ptr(raw as *mut i8) };
c_str.to_str()
}