forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_groupnorm.cpp
57 lines (48 loc) · 1.76 KB
/
test_groupnorm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "layer/groupnorm.h"
#include "testutil.h"
static int test_groupnorm(const ncnn::Mat& a, int group, float eps)
{
int channels = a.c;
ncnn::ParamDict pd;
pd.set(0, group);
pd.set(1, channels);
pd.set(2, eps);
std::vector<ncnn::Mat> weights(2);
weights[0] = RandomMat(channels);
weights[1] = RandomMat(channels);
int ret = test_layer<ncnn::GroupNorm>("GroupNorm", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_groupnorm failed a.dims=%d a=(%d %d %d) group=%d eps=%f\n", a.dims, a.w, a.h, a.c, group, eps);
}
return ret;
}
static int test_groupnorm_0()
{
return 0
|| test_groupnorm(RandomMat(6, 4, 2), 1, 0.01f)
|| test_groupnorm(RandomMat(3, 3, 8), 2, 0.002f)
|| test_groupnorm(RandomMat(4, 5, 6), 3, 0.01f)
|| test_groupnorm(RandomMat(5, 6, 12), 4, 0.02f)
|| test_groupnorm(RandomMat(6, 7, 24), 2, 0.001f)
|| test_groupnorm(RandomMat(8, 9, 24), 3, 0.0001f);
}
int main()
{
SRAND(7767517);
return 0
|| test_groupnorm_0();
}