forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_normalize.cpp
110 lines (96 loc) · 3.88 KB
/
test_normalize.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "layer/normalize.h"
#include "testutil.h"
static int test_normalize(const ncnn::Mat& a, int across_spatial, int across_channel, int channel_shared, float eps, int eps_mode)
{
int scale_data_size = channel_shared ? 1 : a.c;
ncnn::ParamDict pd;
pd.set(0, across_spatial);
pd.set(4, across_channel);
pd.set(1, channel_shared);
pd.set(2, eps);
pd.set(3, scale_data_size);
pd.set(9, eps_mode);
std::vector<ncnn::Mat> weights(1);
weights[0] = RandomMat(scale_data_size);
int ret = test_layer<ncnn::Normalize>("Normalize", pd, weights, a);
if (ret != 0)
{
fprintf(stderr, "test_normalize failed a.dims=%d a=(%d %d %d) across_spatial=%d across_channel=%d channel_shared=%d eps=%f eps_mode=%d\n", a.dims, a.w, a.h, a.c, across_spatial, across_channel, channel_shared, eps, eps_mode);
}
return ret;
}
static int test_normalize_0()
{
ncnn::Mat a = RandomMat(6, 4, 2);
ncnn::Mat b = RandomMat(5, 7, 8);
return 0
|| test_normalize(a, 1, 0, 0, 0.01f, 0)
|| test_normalize(a, 1, 0, 0, 0.001f, 1)
|| test_normalize(a, 1, 0, 0, 0.002f, 2)
|| test_normalize(a, 1, 0, 1, 0.01f, 0)
|| test_normalize(a, 1, 0, 1, 0.001f, 1)
|| test_normalize(a, 1, 0, 1, 0.002f, 2)
|| test_normalize(b, 1, 0, 0, 0.01f, 0)
|| test_normalize(b, 1, 0, 0, 0.001f, 1)
|| test_normalize(b, 1, 0, 0, 0.002f, 2)
|| test_normalize(b, 1, 0, 1, 0.01f, 0)
|| test_normalize(b, 1, 0, 1, 0.001f, 1)
|| test_normalize(b, 1, 0, 1, 0.002f, 2);
}
static int test_normalize_1()
{
ncnn::Mat a = RandomMat(5, 6, 3);
ncnn::Mat b = RandomMat(3, 4, 8);
return 0
|| test_normalize(a, 0, 1, 0, 0.01f, 0)
|| test_normalize(a, 0, 1, 0, 0.001f, 1)
|| test_normalize(a, 0, 1, 0, 0.002f, 2)
|| test_normalize(a, 0, 1, 1, 0.01f, 0)
|| test_normalize(a, 0, 1, 1, 0.001f, 1)
|| test_normalize(a, 0, 1, 1, 0.002f, 2)
|| test_normalize(b, 0, 1, 0, 0.01f, 0)
|| test_normalize(b, 0, 1, 0, 0.001f, 1)
|| test_normalize(b, 0, 1, 0, 0.002f, 2)
|| test_normalize(b, 0, 1, 1, 0.01f, 0)
|| test_normalize(b, 0, 1, 1, 0.001f, 1)
|| test_normalize(b, 0, 1, 1, 0.002f, 2);
}
static int test_normalize_2()
{
ncnn::Mat a = RandomMat(2, 3, 5);
ncnn::Mat b = RandomMat(4, 6, 8);
return 0
|| test_normalize(a, 1, 1, 0, 0.01f, 0)
|| test_normalize(a, 1, 1, 0, 0.001f, 1)
|| test_normalize(a, 1, 1, 0, 0.002f, 2)
|| test_normalize(a, 1, 1, 1, 0.01f, 0)
|| test_normalize(a, 1, 1, 1, 0.001f, 1)
|| test_normalize(a, 1, 1, 1, 0.002f, 2)
|| test_normalize(b, 1, 1, 0, 0.01f, 0)
|| test_normalize(b, 1, 1, 0, 0.001f, 1)
|| test_normalize(b, 1, 1, 0, 0.002f, 2)
|| test_normalize(b, 1, 1, 1, 0.01f, 0)
|| test_normalize(b, 1, 1, 1, 0.001f, 1)
|| test_normalize(b, 1, 1, 1, 0.002f, 2);
}
int main()
{
SRAND(7767517);
return 0
|| test_normalize_0()
|| test_normalize_1()
|| test_normalize_2();
}