-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluate_png.py
executable file
·138 lines (114 loc) · 4.97 KB
/
evaluate_png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import time
import json
import argparse
import numpy as np
from PIL import Image
from tqdm import tqdm
class IOUMetric:
"""
Class to calculate mean-iou using fast_hist method
"""
def __init__(self, num_classes):
self.num_classes = num_classes
self.hist = np.zeros((num_classes, num_classes))
def _fast_hist(self, label_pred, label_true):
# mask = (label_true >= 0) & (label_true < self.num_classes)
mask = (label_true >= 0) & (label_true < self.num_classes) & (
label_pred < self.num_classes)
hist = np.bincount(
self.num_classes * label_true[mask].astype(int) +
label_pred[mask], minlength=self.num_classes ** 2).reshape(self.num_classes, self.num_classes)
return hist
def add_batch(self, predictions, gts):
for lp, lt in zip(predictions, gts):
self.hist += self._fast_hist(lp.flatten(), lt.flatten())
def evaluate(self):
acc = np.diag(self.hist).sum() / self.hist.sum()
recall = np.diag(self.hist) / self.hist.sum(axis=1)
# recall = np.nanmean(recall)
precision = np.diag(self.hist) / self.hist.sum(axis=0)
# precision = np.nanmean(precision)
TP = np.diag(self.hist)
TN = self.hist.sum(axis=1) - np.diag(self.hist)
FP = self.hist.sum(axis=0) - np.diag(self.hist)
iu = np.diag(self.hist) / (self.hist.sum(axis=1) +
self.hist.sum(axis=0) - np.diag(self.hist))
mean_iu = np.nanmean(iu)
freq = self.hist.sum(axis=1) / self.hist.sum()
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum()
cls_iu = dict(zip(range(self.num_classes), iu))
return acc, recall, precision, TP, TN, FP, cls_iu, mean_iu, fwavacc
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='voc12', type=str)
parser.add_argument(
'--datalist', default="./metadata/voc12/train_aug.txt", type=str)
parser.add_argument(
'--gt_dir', default='/media/ders/mazhiming/datasets/VOC2012_1/SegmentationClassAug/', type=str)
parser.add_argument(
'--pred_dir', default='/media/ders/yyp/ReCAM-main/workplace/simplecam12_30_23_04/sem_seg/', type=str)
parser.add_argument(
'--save_path', default='./save/refine/result.txt', type=str)
args = parser.parse_args()
# dataset information
if args.dataset == 'voc12':
args.num_classes = 21
args.ignore_label = 255
elif args.dataset == "coco":
args.num_classes = 81
args.ignore_label = 255
return args
def get_labels(label_file):
idx2num = list()
idx2label = list()
for line in open(label_file).readlines():
num, label = line.strip().split()
idx2num.append(num)
idx2label.append(label)
return idx2num, idx2label
if __name__ == '__main__':
# get arguments
args = parse_args()
idx2num, idx2label = get_labels(os.path.join(
'metadata', args.dataset, 'labels.txt'))
mIOU = IOUMetric(num_classes=args.num_classes)
img_ids = open(args.datalist).read().splitlines()
postfix = '.png'
st = time.time()
for idx, img_id in tqdm(enumerate(img_ids)):
gt_path = os.path.join(args.gt_dir, img_id + postfix)
pred_path = os.path.join(args.pred_dir, img_id + '.png')
gt = Image.open(gt_path)
w, h = gt.size[0], gt.size[1]
# shape = [h, w], 0-20 is classes, 255 is ingore boundary
gt = np.array(gt, dtype=np.uint8)
pred = Image.open(pred_path)
pred = pred.crop((0, 0, w, h))
pred = np.array(pred, dtype=np.uint8) # shape = [h, w]
mIOU.add_batch(pred, gt)
acc, recall, precision, TP, TN, FP, cls_iu, miou, fwavacc = mIOU.evaluate()
mean_prec = np.nanmean(precision)
mean_recall = np.nanmean(recall)
print(acc)
with open(args.save_path, 'w') as f:
f.write("{:>5} {:>20} {:>10} {:>10} {:>10}\n".format(
'IDX', 'Name', 'IoU', 'Prec', 'Recall'))
f.write("{:>5} {:>20} {:>10.2f} {:>10.2f} {:>10.2f}\n".format(
'-', 'mean', miou * 100, mean_prec * 100, mean_recall * 100))
for i in range(args.num_classes):
f.write("{:>5} {:>20} {:>10.2f} {:>10.2f} {:>10.2f}\n".format(
idx2num[i], idx2label[i][:10], cls_iu[i] * 100, precision[i] * 100, recall[i] * 100))
print("{:>8} {:>8} {:>8} {:>8} {:>8}".format(
'IDX', 'IoU', 'Prec', 'Recall', 'ACC'))
print("{:>8} {:>8.2f} {:>8.2f} {:>8.2f} {:>8.2f}".format(
'mean', miou * 100, mean_prec * 100, mean_recall * 100, np.mean(acc) * 100))
# result = {"Recall": ["{:.2f}".format(i) for i in recall.tolist()],
# "Precision": ["{:.2f}".format(i) for i in precision.tolist()],
# "Mean_Recall": mean_recall,
# "Mean_Precision": mean_prec,
# "IoU": cls_iu,
# "Mean IoU": miou,
# "TP": TP.tolist(),
# "TN": TN.tolist(),
# "FP": FP.tolist()}